由实验发现的超几何递归得到的级数加速度公式

P. Levrie, J. Campbell
{"title":"由实验发现的超几何递归得到的级数加速度公式","authors":"P. Levrie, J. Campbell","doi":"10.46298/dmtcs.9557","DOIUrl":null,"url":null,"abstract":"In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences. We prove these recurrences using the WZ method, and we apply these recurrences to obtain series acceleration identities. We introduce a family of summations generalizing a Ramanujan-type series for $\\frac{1}{\\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\\c{s}, and many related results.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Series acceleration formulas obtained from experimentally discovered hypergeometric recursions\",\"authors\":\"P. Levrie, J. Campbell\",\"doi\":\"10.46298/dmtcs.9557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\\\\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences. We prove these recurrences using the WZ method, and we apply these recurrences to obtain series acceleration identities. We introduce a family of summations generalizing a Ramanujan-type series for $\\\\frac{1}{\\\\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\\\\c{s}, and many related results.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.9557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.9557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

2010年,Kh。Hessami Pilehrood和T. Hessami Pilehrood介绍了生成函数恒等式,用于通过Markov- Wilf- Zeilberger方法获得Dirichlet's $\beta$函数值的级数加速度。受这些过去结果的启发,以及Chu等人介绍的相关结果,我们引入了各种超几何递归。我们用WZ方法证明了这些递归式,并应用这些递归式得到了级数加速度恒等式。我们引入了关于Guillera的$\frac{1}{\pi^2}$的ramanujan型级数的推广族和关于Lupa的\c{s}的Catalan常数的加速级数的推广族,以及许多相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Series acceleration formulas obtained from experimentally discovered hypergeometric recursions
In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences. We prove these recurrences using the WZ method, and we apply these recurrences to obtain series acceleration identities. We introduce a family of summations generalizing a Ramanujan-type series for $\frac{1}{\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\c{s}, and many related results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信