{"title":"浅谈现代车载环境下车载通信的改进","authors":"M. A. Qureshi, R. M. Noor","doi":"10.1109/FIT.2013.40","DOIUrl":null,"url":null,"abstract":"Vehicular Ad Hoc Networks (VANETs) is a challenging field of wireless technology that offers a wide variety of useful applications. These applications span from safety related applications to infotainment services. IEEE 802.11p standard that operates in 5.9 GHz frequency band is widely adopted in VANETs for physical and MAC layers. The radio signals in 5.9 GHz band are less penetrating as compared to Wi-Fi that operates in 2.4 GHz band. Obstacles that impede radio signals have high impact on vehicular communication. Thus, maintaining line-of-sight among communicating vehicles improves vehicular communication. Modern day vehicular environment contains road infrastructure units such as curve roads, flyovers, underpasses, tunnels and irregular roads. The modern road infrastructure units introduce non line-of-sight conditions which result in either costly or no communication. This paper introduces a mechanism to maintain line-of-sight among communicating vehicles while considering modern road infrastructure units. The geometrical concepts are used here to model and formulate the line-of-sight (LOS) conditions in various real world scenarios. We have calculated the relative optimal position of signal repeaters / reflectors for maintaining line-of-sight condition in different road infrastructure units.","PeriodicalId":179067,"journal":{"name":"2013 11th International Conference on Frontiers of Information Technology","volume":"719 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Towards Improving Vehicular Communication in Modern Vehicular Environment\",\"authors\":\"M. A. Qureshi, R. M. Noor\",\"doi\":\"10.1109/FIT.2013.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular Ad Hoc Networks (VANETs) is a challenging field of wireless technology that offers a wide variety of useful applications. These applications span from safety related applications to infotainment services. IEEE 802.11p standard that operates in 5.9 GHz frequency band is widely adopted in VANETs for physical and MAC layers. The radio signals in 5.9 GHz band are less penetrating as compared to Wi-Fi that operates in 2.4 GHz band. Obstacles that impede radio signals have high impact on vehicular communication. Thus, maintaining line-of-sight among communicating vehicles improves vehicular communication. Modern day vehicular environment contains road infrastructure units such as curve roads, flyovers, underpasses, tunnels and irregular roads. The modern road infrastructure units introduce non line-of-sight conditions which result in either costly or no communication. This paper introduces a mechanism to maintain line-of-sight among communicating vehicles while considering modern road infrastructure units. The geometrical concepts are used here to model and formulate the line-of-sight (LOS) conditions in various real world scenarios. We have calculated the relative optimal position of signal repeaters / reflectors for maintaining line-of-sight condition in different road infrastructure units.\",\"PeriodicalId\":179067,\"journal\":{\"name\":\"2013 11th International Conference on Frontiers of Information Technology\",\"volume\":\"719 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2013.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2013.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Improving Vehicular Communication in Modern Vehicular Environment
Vehicular Ad Hoc Networks (VANETs) is a challenging field of wireless technology that offers a wide variety of useful applications. These applications span from safety related applications to infotainment services. IEEE 802.11p standard that operates in 5.9 GHz frequency band is widely adopted in VANETs for physical and MAC layers. The radio signals in 5.9 GHz band are less penetrating as compared to Wi-Fi that operates in 2.4 GHz band. Obstacles that impede radio signals have high impact on vehicular communication. Thus, maintaining line-of-sight among communicating vehicles improves vehicular communication. Modern day vehicular environment contains road infrastructure units such as curve roads, flyovers, underpasses, tunnels and irregular roads. The modern road infrastructure units introduce non line-of-sight conditions which result in either costly or no communication. This paper introduces a mechanism to maintain line-of-sight among communicating vehicles while considering modern road infrastructure units. The geometrical concepts are used here to model and formulate the line-of-sight (LOS) conditions in various real world scenarios. We have calculated the relative optimal position of signal repeaters / reflectors for maintaining line-of-sight condition in different road infrastructure units.