{"title":"多层次分类的可扩展卷积神经网络","authors":"Valentino Peluso, A. Calimera","doi":"10.1145/3240765.3240845","DOIUrl":null,"url":null,"abstract":"This work introduces the concept of scalable-effort Convolutional Neural Networks (ConvNets), an effort-accuracy scalable model for classification of data at multilevel abstraction. Scalable-effort ConvNets are able to adapt at run-time to the complexity of the classification problem, i.e. the level of abstraction defined by the application (or context), and reach a given classification accuracy with minimal computational effort. The mechanism is implemented using a single-weight scalable-precision model rather than an ensemble of quantized weight models; this makes the proposed strategy highly flexible and particularly suited for embedded architectures with limited resource availability. The paper describes (i) a hardware/software vertical implementation of scalable-precision multiply&accumulate arithmetic, (ii) an accuracy-constrained heuristic that delivers near-optimal layer-by-layer precision mapping at a predefined level of abstraction. It also reports the validation for three state-of-the-art nets, i.e. AlexNet, SqueezeNet and MobileNet, trained and tested with ImageNet. Collected results show scalable-effort ConvNets guarantee flexibility and substantial savings: 47.07% computational effort reduction at minimum accuracy, or 30.6% accuracy improvement at maximum effort w.r.t. standard flat ConvNets (average over the three benchmarks for high-level classification).","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Scalable-Effort ConvNets for Multilevel Classification\",\"authors\":\"Valentino Peluso, A. Calimera\",\"doi\":\"10.1145/3240765.3240845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces the concept of scalable-effort Convolutional Neural Networks (ConvNets), an effort-accuracy scalable model for classification of data at multilevel abstraction. Scalable-effort ConvNets are able to adapt at run-time to the complexity of the classification problem, i.e. the level of abstraction defined by the application (or context), and reach a given classification accuracy with minimal computational effort. The mechanism is implemented using a single-weight scalable-precision model rather than an ensemble of quantized weight models; this makes the proposed strategy highly flexible and particularly suited for embedded architectures with limited resource availability. The paper describes (i) a hardware/software vertical implementation of scalable-precision multiply&accumulate arithmetic, (ii) an accuracy-constrained heuristic that delivers near-optimal layer-by-layer precision mapping at a predefined level of abstraction. It also reports the validation for three state-of-the-art nets, i.e. AlexNet, SqueezeNet and MobileNet, trained and tested with ImageNet. Collected results show scalable-effort ConvNets guarantee flexibility and substantial savings: 47.07% computational effort reduction at minimum accuracy, or 30.6% accuracy improvement at maximum effort w.r.t. standard flat ConvNets (average over the three benchmarks for high-level classification).\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"367 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable-Effort ConvNets for Multilevel Classification
This work introduces the concept of scalable-effort Convolutional Neural Networks (ConvNets), an effort-accuracy scalable model for classification of data at multilevel abstraction. Scalable-effort ConvNets are able to adapt at run-time to the complexity of the classification problem, i.e. the level of abstraction defined by the application (or context), and reach a given classification accuracy with minimal computational effort. The mechanism is implemented using a single-weight scalable-precision model rather than an ensemble of quantized weight models; this makes the proposed strategy highly flexible and particularly suited for embedded architectures with limited resource availability. The paper describes (i) a hardware/software vertical implementation of scalable-precision multiply&accumulate arithmetic, (ii) an accuracy-constrained heuristic that delivers near-optimal layer-by-layer precision mapping at a predefined level of abstraction. It also reports the validation for three state-of-the-art nets, i.e. AlexNet, SqueezeNet and MobileNet, trained and tested with ImageNet. Collected results show scalable-effort ConvNets guarantee flexibility and substantial savings: 47.07% computational effort reduction at minimum accuracy, or 30.6% accuracy improvement at maximum effort w.r.t. standard flat ConvNets (average over the three benchmarks for high-level classification).