迈向单主机多gpu系统

Ming-Hung Chen, I. Chung, B. Abali, P. Crumley
{"title":"迈向单主机多gpu系统","authors":"Ming-Hung Chen, I. Chung, B. Abali, P. Crumley","doi":"10.1109/CAHPC.2018.8645874","DOIUrl":null,"url":null,"abstract":"As computation-intensive tasks such as deep learning and big data analysis take advantage of GPU based accelerators, the interconnection links may become a bottleneck. In this paper, we investigate the upcoming performance bottleneck of multi-accelerator systems, as the number of accelerators equipped with single host grows. We instrumented the host PCIe fabric to measure the data transfer and compared it with the measurements from the software tool. It shows how the data transfer (P2P) helps to avoid the bottleneck on the interconnection links, but multi-GPU performance does not scale up as expected due to the control messages. We quantify the impact of host control messages with suggestions to remedy scalability bottlenecks. We also implement the proposed strategy on Lulesh to validate the concept. The result shows our strategy can save 59.86% time cost of the kernel and 13.32% PCIe H2D payload.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a Single-Host Many-GPU System\",\"authors\":\"Ming-Hung Chen, I. Chung, B. Abali, P. Crumley\",\"doi\":\"10.1109/CAHPC.2018.8645874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As computation-intensive tasks such as deep learning and big data analysis take advantage of GPU based accelerators, the interconnection links may become a bottleneck. In this paper, we investigate the upcoming performance bottleneck of multi-accelerator systems, as the number of accelerators equipped with single host grows. We instrumented the host PCIe fabric to measure the data transfer and compared it with the measurements from the software tool. It shows how the data transfer (P2P) helps to avoid the bottleneck on the interconnection links, but multi-GPU performance does not scale up as expected due to the control messages. We quantify the impact of host control messages with suggestions to remedy scalability bottlenecks. We also implement the proposed strategy on Lulesh to validate the concept. The result shows our strategy can save 59.86% time cost of the kernel and 13.32% PCIe H2D payload.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着深度学习和大数据分析等计算密集型任务利用基于GPU的加速器,互连链路可能成为瓶颈。在本文中,我们研究了随着单个主机上的加速器数量的增加,多加速器系统即将出现的性能瓶颈。我们测量了主机PCIe结构来测量数据传输,并将其与软件工具的测量结果进行了比较。它显示了数据传输(P2P)如何帮助避免互连链路上的瓶颈,但由于控制消息,多gpu性能并没有像预期的那样扩展。我们量化了主机控制消息的影响,并提出了补救可伸缩性瓶颈的建议。我们还在Lulesh上实施了所提出的策略来验证这一概念。结果表明,该策略可节省59.86%的内核时间成本和13.32%的PCIe H2D负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Single-Host Many-GPU System
As computation-intensive tasks such as deep learning and big data analysis take advantage of GPU based accelerators, the interconnection links may become a bottleneck. In this paper, we investigate the upcoming performance bottleneck of multi-accelerator systems, as the number of accelerators equipped with single host grows. We instrumented the host PCIe fabric to measure the data transfer and compared it with the measurements from the software tool. It shows how the data transfer (P2P) helps to avoid the bottleneck on the interconnection links, but multi-GPU performance does not scale up as expected due to the control messages. We quantify the impact of host control messages with suggestions to remedy scalability bottlenecks. We also implement the proposed strategy on Lulesh to validate the concept. The result shows our strategy can save 59.86% time cost of the kernel and 13.32% PCIe H2D payload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信