{"title":"下体支撑行为在外部支持的任务与延伸","authors":"Jessica Cappelletto, J. Potvin","doi":"10.1504/ijhfms.2019.10023733","DOIUrl":null,"url":null,"abstract":"In many jobs, objects in the task environment can restrict a worker's posture, by constraining how close their body is to the object being acted on. Although this provides an obstacle for the worker, these objects can be used to externally support their body by means of lower body bracing. The purpose of this study was to determine when participants would brace, and to quantify the amount of force used for bracing. At four task hand locations, participants performed six exertions, with all combinations of two forces and three directions, and participants chose whether they braced or not. Participants were twice as likely to brace when the task had a far reach. Average brace forces were 117 N for upwards and pulling exertions, and 67 N for downward exertions. These data can be used to guide the prediction of external forces during work simulation and proactive ergonomics assessments.","PeriodicalId":417746,"journal":{"name":"International Journal of Human Factors Modelling and Simulation","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lower body bracing behaviours during externally supported tasks with extended reaches\",\"authors\":\"Jessica Cappelletto, J. Potvin\",\"doi\":\"10.1504/ijhfms.2019.10023733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many jobs, objects in the task environment can restrict a worker's posture, by constraining how close their body is to the object being acted on. Although this provides an obstacle for the worker, these objects can be used to externally support their body by means of lower body bracing. The purpose of this study was to determine when participants would brace, and to quantify the amount of force used for bracing. At four task hand locations, participants performed six exertions, with all combinations of two forces and three directions, and participants chose whether they braced or not. Participants were twice as likely to brace when the task had a far reach. Average brace forces were 117 N for upwards and pulling exertions, and 67 N for downward exertions. These data can be used to guide the prediction of external forces during work simulation and proactive ergonomics assessments.\",\"PeriodicalId\":417746,\"journal\":{\"name\":\"International Journal of Human Factors Modelling and Simulation\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Human Factors Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijhfms.2019.10023733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human Factors Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhfms.2019.10023733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lower body bracing behaviours during externally supported tasks with extended reaches
In many jobs, objects in the task environment can restrict a worker's posture, by constraining how close their body is to the object being acted on. Although this provides an obstacle for the worker, these objects can be used to externally support their body by means of lower body bracing. The purpose of this study was to determine when participants would brace, and to quantify the amount of force used for bracing. At four task hand locations, participants performed six exertions, with all combinations of two forces and three directions, and participants chose whether they braced or not. Participants were twice as likely to brace when the task had a far reach. Average brace forces were 117 N for upwards and pulling exertions, and 67 N for downward exertions. These data can be used to guide the prediction of external forces during work simulation and proactive ergonomics assessments.