精确Hessian矩阵的逆运动学问题

Kenny Erleben, S. Andrews
{"title":"精确Hessian矩阵的逆运动学问题","authors":"Kenny Erleben, S. Andrews","doi":"10.1145/3136457.3136464","DOIUrl":null,"url":null,"abstract":"Inverse kinematics (IK) is a central component of systems for motion capture, character animation, motion planning, and robotics control. The field of computer graphics has developed fast stationary point solvers methods, such as the Jacobian transpose method and cyclic coordinate descent. Much work with Newton methods focus on avoiding directly computing the Hessian, and instead approximations are sought, such as in the BFGS class of solvers. This paper presents a numerical method for computing the exact Hessian of an IK system with spherical joints. It is applicable to human skeletons in computer animation applications and some, but not all, robots. Our results show that using exact Hessians can give performance advantages and higher accuracy compared to standard numerical methods used for solving IK problems. Furthermore, we provide code and supplementary details that allows researchers to plug-in exact Hessians in their own work with little effort.","PeriodicalId":159266,"journal":{"name":"Proceedings of the 10th International Conference on Motion in Games","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Inverse kinematics problems with exact Hessian matrices\",\"authors\":\"Kenny Erleben, S. Andrews\",\"doi\":\"10.1145/3136457.3136464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse kinematics (IK) is a central component of systems for motion capture, character animation, motion planning, and robotics control. The field of computer graphics has developed fast stationary point solvers methods, such as the Jacobian transpose method and cyclic coordinate descent. Much work with Newton methods focus on avoiding directly computing the Hessian, and instead approximations are sought, such as in the BFGS class of solvers. This paper presents a numerical method for computing the exact Hessian of an IK system with spherical joints. It is applicable to human skeletons in computer animation applications and some, but not all, robots. Our results show that using exact Hessians can give performance advantages and higher accuracy compared to standard numerical methods used for solving IK problems. Furthermore, we provide code and supplementary details that allows researchers to plug-in exact Hessians in their own work with little effort.\",\"PeriodicalId\":159266,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Motion in Games\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3136457.3136464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136457.3136464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

逆运动学(IK)是运动捕捉、角色动画、运动规划和机器人控制系统的核心组件。计算机图形学领域发展了快速的平稳点求解方法,如雅可比转置法和循环坐标下降法。牛顿方法的大部分工作都集中在避免直接计算黑森量,而是寻求近似,例如在BFGS类求解器中。本文给出了一种计算具有球面关节的IK系统精确黑森量的数值方法。它适用于计算机动画应用中的人体骨骼和一些(但不是全部)机器人。我们的研究结果表明,与用于解决IK问题的标准数值方法相比,使用精确的Hessians可以提供性能优势和更高的精度。此外,我们还提供了代码和补充细节,使研究人员可以毫不费力地在自己的工作中插入精确的Hessians。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse kinematics problems with exact Hessian matrices
Inverse kinematics (IK) is a central component of systems for motion capture, character animation, motion planning, and robotics control. The field of computer graphics has developed fast stationary point solvers methods, such as the Jacobian transpose method and cyclic coordinate descent. Much work with Newton methods focus on avoiding directly computing the Hessian, and instead approximations are sought, such as in the BFGS class of solvers. This paper presents a numerical method for computing the exact Hessian of an IK system with spherical joints. It is applicable to human skeletons in computer animation applications and some, but not all, robots. Our results show that using exact Hessians can give performance advantages and higher accuracy compared to standard numerical methods used for solving IK problems. Furthermore, we provide code and supplementary details that allows researchers to plug-in exact Hessians in their own work with little effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信