电力系统事件类型微分的迁移学习

Haoran Li, Zhihao Ma, Yang Weng, E. Farantatos
{"title":"电力系统事件类型微分的迁移学习","authors":"Haoran Li, Zhihao Ma, Yang Weng, E. Farantatos","doi":"10.1109/SGSMA51733.2022.9805850","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) models are continuously introduced to power systems in domains like state estimation and event identification. However, training an ML model usually requires a lot of data. For data-limited grids, we propose a transfer learning framework to transfer knowledge from a source grid with rich Phasor Measurement Unit (PMU) data for the event-type differentiation problem. The goal is challenging due to (1) different dimensionalities of the source and the target measurement spaces, (2) dissimilar data distributions, and (3) redundant PMU’s information. Thus, we project the source and the target measurement space into a latent feature space, which reduces and aligns the dimensionality of input measurements, maintains close data distributions in the latent space, and enables the transferability from the source domain to the target domain. Then, we introduce transfer learning in supervised learning by vectorizing each PMU’s measurement window as one training sample, forming the latent space. We theoretically show that our approach minimizes the upper bound of misclassification rate and experimentally demonstrates the high performance on various synthetic datasets.","PeriodicalId":256954,"journal":{"name":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transfer Learning for Event-Type Differentiation on Power Systems\",\"authors\":\"Haoran Li, Zhihao Ma, Yang Weng, E. Farantatos\",\"doi\":\"10.1109/SGSMA51733.2022.9805850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) models are continuously introduced to power systems in domains like state estimation and event identification. However, training an ML model usually requires a lot of data. For data-limited grids, we propose a transfer learning framework to transfer knowledge from a source grid with rich Phasor Measurement Unit (PMU) data for the event-type differentiation problem. The goal is challenging due to (1) different dimensionalities of the source and the target measurement spaces, (2) dissimilar data distributions, and (3) redundant PMU’s information. Thus, we project the source and the target measurement space into a latent feature space, which reduces and aligns the dimensionality of input measurements, maintains close data distributions in the latent space, and enables the transferability from the source domain to the target domain. Then, we introduce transfer learning in supervised learning by vectorizing each PMU’s measurement window as one training sample, forming the latent space. We theoretically show that our approach minimizes the upper bound of misclassification rate and experimentally demonstrates the high performance on various synthetic datasets.\",\"PeriodicalId\":256954,\"journal\":{\"name\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGSMA51733.2022.9805850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGSMA51733.2022.9805850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习(ML)模型不断被引入电力系统的状态估计和事件识别等领域。然而,训练ML模型通常需要大量的数据。对于数据有限的网格,我们提出了一个迁移学习框架,从具有丰富相量测量单元(PMU)数据的源网格中迁移知识,以解决事件类型微分问题。由于(1)源和目标测量空间的维数不同,(2)数据分布不同,以及(3)PMU信息冗余,该目标具有挑战性。因此,我们将源测量空间和目标测量空间投影到潜在特征空间中,从而降低和对齐输入测量的维数,保持潜在空间中数据的紧密分布,并实现源域到目标域的可转移性。然后,我们将迁移学习引入监督学习,将每个PMU的测量窗口矢量化为一个训练样本,形成潜在空间。我们从理论上证明了我们的方法最小化了错误分类率的上界,并通过实验证明了在各种合成数据集上的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning for Event-Type Differentiation on Power Systems
Machine Learning (ML) models are continuously introduced to power systems in domains like state estimation and event identification. However, training an ML model usually requires a lot of data. For data-limited grids, we propose a transfer learning framework to transfer knowledge from a source grid with rich Phasor Measurement Unit (PMU) data for the event-type differentiation problem. The goal is challenging due to (1) different dimensionalities of the source and the target measurement spaces, (2) dissimilar data distributions, and (3) redundant PMU’s information. Thus, we project the source and the target measurement space into a latent feature space, which reduces and aligns the dimensionality of input measurements, maintains close data distributions in the latent space, and enables the transferability from the source domain to the target domain. Then, we introduce transfer learning in supervised learning by vectorizing each PMU’s measurement window as one training sample, forming the latent space. We theoretically show that our approach minimizes the upper bound of misclassification rate and experimentally demonstrates the high performance on various synthetic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信