复杂性是随机的吗?

Wu Tong
{"title":"复杂性是随机的吗?","authors":"Wu Tong","doi":"10.1201/b11610-3","DOIUrl":null,"url":null,"abstract":"Discussed and analysed some mistakes in understandin g Kolmogorov complexity, pointed out incompressibility not equal to disorder, and not equal to stochastic in trad ition, in some cases, even be in opposition. It is explained that Kolmogorov com plexity can become a measure for or der state of systems.","PeriodicalId":125940,"journal":{"name":"Journal of Systemic Dialectics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Is Complexity Randomness\",\"authors\":\"Wu Tong\",\"doi\":\"10.1201/b11610-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discussed and analysed some mistakes in understandin g Kolmogorov complexity, pointed out incompressibility not equal to disorder, and not equal to stochastic in trad ition, in some cases, even be in opposition. It is explained that Kolmogorov com plexity can become a measure for or der state of systems.\",\"PeriodicalId\":125940,\"journal\":{\"name\":\"Journal of Systemic Dialectics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systemic Dialectics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/b11610-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systemic Dialectics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b11610-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

讨论和分析了人们对柯尔莫哥洛夫复杂性认识上的一些错误,指出不可压缩性不等于无序性,也不等于随机性,在某些情况下甚至是对立的。解释了柯尔莫哥洛夫复杂度可以成为系统状态的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is Complexity Randomness
Discussed and analysed some mistakes in understandin g Kolmogorov complexity, pointed out incompressibility not equal to disorder, and not equal to stochastic in trad ition, in some cases, even be in opposition. It is explained that Kolmogorov com plexity can become a measure for or der state of systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信