{"title":"无限维de Saint-Venant方程控制的LOI/BOI方法的数值推广","authors":"V. D. S. Martins, M. Rodrigues","doi":"10.1137/1.9781611974072.13","DOIUrl":null,"url":null,"abstract":"This paper considers the control design of a nonlinear distributed parameter system in infinite dimension, described by the hyperbolic Partial Differential Equations (PDEs) of de Saint-Venant. The nonlinear system dynamic is formulated by a Multi-Models approach over a wide operating range, where each local model is defined around a set of operating regimes. A Proportional Integral (PI) feedback was designed and performed through Bilinear Operator Inequality (BOI) and Linear Operator Inequality (LOI) techniques for infinite dimensional systems. The authors propose in this paper to improve the numerical part by introducing weight μi not only equal to {0,1}, but μi ∈ [0, 1].","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some numerical extension for the LOI/BOI approach for the control of de Saint-Venant equations in infinite dimension\",\"authors\":\"V. D. S. Martins, M. Rodrigues\",\"doi\":\"10.1137/1.9781611974072.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the control design of a nonlinear distributed parameter system in infinite dimension, described by the hyperbolic Partial Differential Equations (PDEs) of de Saint-Venant. The nonlinear system dynamic is formulated by a Multi-Models approach over a wide operating range, where each local model is defined around a set of operating regimes. A Proportional Integral (PI) feedback was designed and performed through Bilinear Operator Inequality (BOI) and Linear Operator Inequality (LOI) techniques for infinite dimensional systems. The authors propose in this paper to improve the numerical part by introducing weight μi not only equal to {0,1}, but μi ∈ [0, 1].\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some numerical extension for the LOI/BOI approach for the control of de Saint-Venant equations in infinite dimension
This paper considers the control design of a nonlinear distributed parameter system in infinite dimension, described by the hyperbolic Partial Differential Equations (PDEs) of de Saint-Venant. The nonlinear system dynamic is formulated by a Multi-Models approach over a wide operating range, where each local model is defined around a set of operating regimes. A Proportional Integral (PI) feedback was designed and performed through Bilinear Operator Inequality (BOI) and Linear Operator Inequality (LOI) techniques for infinite dimensional systems. The authors propose in this paper to improve the numerical part by introducing weight μi not only equal to {0,1}, but μi ∈ [0, 1].