无限维de Saint-Venant方程控制的LOI/BOI方法的数值推广

V. D. S. Martins, M. Rodrigues
{"title":"无限维de Saint-Venant方程控制的LOI/BOI方法的数值推广","authors":"V. D. S. Martins, M. Rodrigues","doi":"10.1137/1.9781611974072.13","DOIUrl":null,"url":null,"abstract":"This paper considers the control design of a nonlinear distributed parameter system in infinite dimension, described by the hyperbolic Partial Differential Equations (PDEs) of de Saint-Venant. The nonlinear system dynamic is formulated by a Multi-Models approach over a wide operating range, where each local model is defined around a set of operating regimes. A Proportional Integral (PI) feedback was designed and performed through Bilinear Operator Inequality (BOI) and Linear Operator Inequality (LOI) techniques for infinite dimensional systems. The authors propose in this paper to improve the numerical part by introducing weight μi not only equal to {0,1}, but μi ∈ [0, 1].","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some numerical extension for the LOI/BOI approach for the control of de Saint-Venant equations in infinite dimension\",\"authors\":\"V. D. S. Martins, M. Rodrigues\",\"doi\":\"10.1137/1.9781611974072.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the control design of a nonlinear distributed parameter system in infinite dimension, described by the hyperbolic Partial Differential Equations (PDEs) of de Saint-Venant. The nonlinear system dynamic is formulated by a Multi-Models approach over a wide operating range, where each local model is defined around a set of operating regimes. A Proportional Integral (PI) feedback was designed and performed through Bilinear Operator Inequality (BOI) and Linear Operator Inequality (LOI) techniques for infinite dimensional systems. The authors propose in this paper to improve the numerical part by introducing weight μi not only equal to {0,1}, but μi ∈ [0, 1].\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由de Saint-Venant的双曲型偏微分方程(PDEs)描述的无限维非线性分布参数系统的控制设计。非线性系统动力学是由一个多模型方法在一个大的工作范围内制定的,其中每个局部模型是围绕一组工作制度定义的。利用双线性算子不等式(BOI)和线性算子不等式(LOI)技术设计并实现了无限维系统的比例积分(PI)反馈。本文提出通过引入不仅等于{0,1}且μi∈[0,1]的权值μi来改进数值部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some numerical extension for the LOI/BOI approach for the control of de Saint-Venant equations in infinite dimension
This paper considers the control design of a nonlinear distributed parameter system in infinite dimension, described by the hyperbolic Partial Differential Equations (PDEs) of de Saint-Venant. The nonlinear system dynamic is formulated by a Multi-Models approach over a wide operating range, where each local model is defined around a set of operating regimes. A Proportional Integral (PI) feedback was designed and performed through Bilinear Operator Inequality (BOI) and Linear Operator Inequality (LOI) techniques for infinite dimensional systems. The authors propose in this paper to improve the numerical part by introducing weight μi not only equal to {0,1}, but μi ∈ [0, 1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信