有限时间范围内情景连续时间线性二次强化学习的对数后悔

Matteo Basei, Xin Guo, Anran Hu, Yufei Zhang
{"title":"有限时间范围内情景连续时间线性二次强化学习的对数后悔","authors":"Matteo Basei, Xin Guo, Anran Hu, Yufei Zhang","doi":"10.2139/ssrn.3848428","DOIUrl":null,"url":null,"abstract":"We study finite-time horizon continuous-time linear-quadratic reinforcement learning problems in an episodic setting, where both the state and control coefficients are unknown to the controller. We first propose a least-squares algorithm based on continuous-time observations and controls, and establish a logarithmic regret bound of order $O((\\ln M)(\\ln\\ln M))$, with $M$ being the number of learning episodes. The analysis consists of two parts: perturbation analysis, which exploits the regularity and robustness of the associated Riccati differential equation; and parameter estimation error, which relies on sub-exponential properties of continuous-time least-squares estimators. We further propose a practically implementable least-squares algorithm based on discrete-time observations and piecewise constant controls, which achieves similar logarithmic regret with an additional term depending explicitly on the time stepsizes used in the algorithm.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Logarithmic Regret for Episodic Continuous-Time Linear-Quadratic Reinforcement Learning Over a Finite-Time Horizon\",\"authors\":\"Matteo Basei, Xin Guo, Anran Hu, Yufei Zhang\",\"doi\":\"10.2139/ssrn.3848428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study finite-time horizon continuous-time linear-quadratic reinforcement learning problems in an episodic setting, where both the state and control coefficients are unknown to the controller. We first propose a least-squares algorithm based on continuous-time observations and controls, and establish a logarithmic regret bound of order $O((\\\\ln M)(\\\\ln\\\\ln M))$, with $M$ being the number of learning episodes. The analysis consists of two parts: perturbation analysis, which exploits the regularity and robustness of the associated Riccati differential equation; and parameter estimation error, which relies on sub-exponential properties of continuous-time least-squares estimators. We further propose a practically implementable least-squares algorithm based on discrete-time observations and piecewise constant controls, which achieves similar logarithmic regret with an additional term depending explicitly on the time stepsizes used in the algorithm.\",\"PeriodicalId\":363330,\"journal\":{\"name\":\"Computation Theory eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation Theory eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3848428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3848428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们研究了在情景设置中的有限时间视界连续时间线性二次强化学习问题,其中状态和控制系数对控制器都是未知的。我们首先提出了一种基于连续时间观察和控制的最小二乘算法,并建立了阶为$O((\ln M)(\ln\ln M))$的对数遗憾界,其中$M$为学习集的数量。分析由两部分组成:微扰分析,利用相关Riccati微分方程的正则性和鲁棒性;参数估计误差依赖于连续时间最小二乘估计的次指数性质。我们进一步提出了一种实际可实现的基于离散时间观测和分段常数控制的最小二乘算法,该算法实现了类似的对数遗憾,并明确地根据算法中使用的时间步长增加了一个附加项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic Regret for Episodic Continuous-Time Linear-Quadratic Reinforcement Learning Over a Finite-Time Horizon
We study finite-time horizon continuous-time linear-quadratic reinforcement learning problems in an episodic setting, where both the state and control coefficients are unknown to the controller. We first propose a least-squares algorithm based on continuous-time observations and controls, and establish a logarithmic regret bound of order $O((\ln M)(\ln\ln M))$, with $M$ being the number of learning episodes. The analysis consists of two parts: perturbation analysis, which exploits the regularity and robustness of the associated Riccati differential equation; and parameter estimation error, which relies on sub-exponential properties of continuous-time least-squares estimators. We further propose a practically implementable least-squares algorithm based on discrete-time observations and piecewise constant controls, which achieves similar logarithmic regret with an additional term depending explicitly on the time stepsizes used in the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信