计算超几何项和的最小伸缩器

SIGSAM Bull. Pub Date : 2001-09-01 DOI:10.1145/569746.569748
H. Q. Le
{"title":"计算超几何项和的最小伸缩器","authors":"H. Q. Le","doi":"10.1145/569746.569748","DOIUrl":null,"url":null,"abstract":"Let <i>T</i> (<i>n, k</i>) be a hypergeometric term of <i>n</i> and <i>k.</i> We present in this paper an algorithm to construct the minimal telescoper for <i>U</i> (<i>n, k</i>) = ∑<inf><i>m=b</i></inf><sup><i>n</i>-1</sup> <i>T</i> (<i>m, k</i>), <i>b</i> ε ℤ, if it exists. We show a Maple implementation of this method and discuss the problem of finding closed forms of definite sums of <i>U</i> (<i>n, k</i>).","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the minimal telescoper for sums of hypergeometric terms\",\"authors\":\"H. Q. Le\",\"doi\":\"10.1145/569746.569748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>T</i> (<i>n, k</i>) be a hypergeometric term of <i>n</i> and <i>k.</i> We present in this paper an algorithm to construct the minimal telescoper for <i>U</i> (<i>n, k</i>) = ∑<inf><i>m=b</i></inf><sup><i>n</i>-1</sup> <i>T</i> (<i>m, k</i>), <i>b</i> ε ℤ, if it exists. We show a Maple implementation of this method and discuss the problem of finding closed forms of definite sums of <i>U</i> (<i>n, k</i>).\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/569746.569748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/569746.569748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设T (n, k)是n和k的超几何项。本文给出了U (n, k) =∑m=bn-1 T (m, k), b ε 0的最小望远镜的构造算法,如果它存在。我们给出了该方法的一个Maple实现,并讨论了寻找U (n, k)定和的封闭形式的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the minimal telescoper for sums of hypergeometric terms
Let T (n, k) be a hypergeometric term of n and k. We present in this paper an algorithm to construct the minimal telescoper for U (n, k) = ∑m=bn-1 T (m, k), b ε ℤ, if it exists. We show a Maple implementation of this method and discuss the problem of finding closed forms of definite sums of U (n, k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信