采用结构紧致矩阵法计算紧致系数

D. Fomin, E. Degtyaryov
{"title":"采用结构紧致矩阵法计算紧致系数","authors":"D. Fomin, E. Degtyaryov","doi":"10.22250/isu.2021.69.25-38","DOIUrl":null,"url":null,"abstract":"The method of compact matrix description of regular three-dimensional spatial configurations and numerical techniques developed on its basis for calculating some structural and energy parameters of cubic lattices have proved to be more effective in comparison with other numerical methods. The suc-cessful application of the compact matrix method for the description of the simplest hexagonal lattice allows us to develop more efficient numerical methods for calculating the structural and energy pa-rameters of lattices of this type.","PeriodicalId":426728,"journal":{"name":"Informatika i sistemy upravleniya","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE USE OF STRUCTURAL COMPACT MATRIX METHOD FOR CALCULATING THE COM-PACTNESS COEFFICIENT\",\"authors\":\"D. Fomin, E. Degtyaryov\",\"doi\":\"10.22250/isu.2021.69.25-38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of compact matrix description of regular three-dimensional spatial configurations and numerical techniques developed on its basis for calculating some structural and energy parameters of cubic lattices have proved to be more effective in comparison with other numerical methods. The suc-cessful application of the compact matrix method for the description of the simplest hexagonal lattice allows us to develop more efficient numerical methods for calculating the structural and energy pa-rameters of lattices of this type.\",\"PeriodicalId\":426728,\"journal\":{\"name\":\"Informatika i sistemy upravleniya\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatika i sistemy upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22250/isu.2021.69.25-38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatika i sistemy upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22250/isu.2021.69.25-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

规则三维空间构型的紧矩阵描述方法和在此基础上发展起来的计算立方晶格某些结构和能量参数的数值技术,已被证明比其他数值方法更有效。紧矩阵法在最简单六边形晶格描述中的成功应用,使我们能够开发出更有效的数值方法来计算这类晶格的结构参数和能量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE USE OF STRUCTURAL COMPACT MATRIX METHOD FOR CALCULATING THE COM-PACTNESS COEFFICIENT
The method of compact matrix description of regular three-dimensional spatial configurations and numerical techniques developed on its basis for calculating some structural and energy parameters of cubic lattices have proved to be more effective in comparison with other numerical methods. The suc-cessful application of the compact matrix method for the description of the simplest hexagonal lattice allows us to develop more efficient numerical methods for calculating the structural and energy pa-rameters of lattices of this type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信