深度神经网络在工业协议识别和密码套件中的应用

E. Holasova, R. Fujdiak
{"title":"深度神经网络在工业协议识别和密码套件中的应用","authors":"E. Holasova, R. Fujdiak","doi":"10.1109/ICCST52959.2022.9896532","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to determine the network traffic parameters to classify the industrial protocol and the cipher suite used without prior knowledge of the network using deep learning. To recognize industrial protocols, our test environment was used to generate a dataset because suitable, publicly available datasets are not available. The testbed generated an unsecured version of Modbus/TCP and three types of Modbus/TCP Security with different cipher using with the same data flow. This allows us to avoid the influence caused by the transmitted content. In this paper, three scenarios are provided, in which different numbers of input parameters are used for model training. Using the presented approach, it is possible to recognize the industrial protocol and the cipher suite with an accuracy of 0.945 with 17 input parameters taken from the link, network, and transport layers of the reference ISO/OSI model (not the application layer). Each scenario is validated on training, testing, and validation data. Based on the reached results, the presented approach is also applicable in real-time processing for protocol recognition with identification of the used cipher suite. The use of neural networks to recognize the industrial protocol and encryption set used enables big data processing with minimal time overhead to perform traffic classification. Packet-by-packet classification allows the detection of changes made to the industrial protocol, the use of a new protocol in the network, or the tunneling of traffic through another protocol.","PeriodicalId":364791,"journal":{"name":"2022 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Networks for Industrial Protocol Recognition and Cipher Suite Used\",\"authors\":\"E. Holasova, R. Fujdiak\",\"doi\":\"10.1109/ICCST52959.2022.9896532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to determine the network traffic parameters to classify the industrial protocol and the cipher suite used without prior knowledge of the network using deep learning. To recognize industrial protocols, our test environment was used to generate a dataset because suitable, publicly available datasets are not available. The testbed generated an unsecured version of Modbus/TCP and three types of Modbus/TCP Security with different cipher using with the same data flow. This allows us to avoid the influence caused by the transmitted content. In this paper, three scenarios are provided, in which different numbers of input parameters are used for model training. Using the presented approach, it is possible to recognize the industrial protocol and the cipher suite with an accuracy of 0.945 with 17 input parameters taken from the link, network, and transport layers of the reference ISO/OSI model (not the application layer). Each scenario is validated on training, testing, and validation data. Based on the reached results, the presented approach is also applicable in real-time processing for protocol recognition with identification of the used cipher suite. The use of neural networks to recognize the industrial protocol and encryption set used enables big data processing with minimal time overhead to perform traffic classification. Packet-by-packet classification allows the detection of changes made to the industrial protocol, the use of a new protocol in the network, or the tunneling of traffic through another protocol.\",\"PeriodicalId\":364791,\"journal\":{\"name\":\"2022 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCST52959.2022.9896532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCST52959.2022.9896532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目标是确定网络流量参数,以便在不事先了解网络的情况下使用深度学习对工业协议和密码套件进行分类。为了识别工业协议,我们的测试环境被用来生成一个数据集,因为合适的、公开可用的数据集是不可用的。实验平台生成了Modbus/TCP的不安全版本和三种Modbus/TCP安全版本,使用不同的密码,使用相同的数据流。这样可以避免由于传输内容带来的影响。本文提供了三种场景,分别使用不同数量的输入参数进行模型训练。使用所提出的方法,有可能以0.945的精度识别工业协议和密码套件,并从参考ISO/OSI模型(不是应用层)的链路、网络和传输层获取17个输入参数。每个场景都在训练、测试和验证数据上进行验证。基于已达到的结果,该方法也适用于协议识别和使用的密码组识别的实时处理。使用神经网络来识别所使用的工业协议和加密集,使大数据处理能够以最小的时间开销来执行流量分类。逐包分类允许检测对工业协议所做的更改,在网络中使用新协议,或通过另一协议的流量隧道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Networks for Industrial Protocol Recognition and Cipher Suite Used
The main objective of this paper is to determine the network traffic parameters to classify the industrial protocol and the cipher suite used without prior knowledge of the network using deep learning. To recognize industrial protocols, our test environment was used to generate a dataset because suitable, publicly available datasets are not available. The testbed generated an unsecured version of Modbus/TCP and three types of Modbus/TCP Security with different cipher using with the same data flow. This allows us to avoid the influence caused by the transmitted content. In this paper, three scenarios are provided, in which different numbers of input parameters are used for model training. Using the presented approach, it is possible to recognize the industrial protocol and the cipher suite with an accuracy of 0.945 with 17 input parameters taken from the link, network, and transport layers of the reference ISO/OSI model (not the application layer). Each scenario is validated on training, testing, and validation data. Based on the reached results, the presented approach is also applicable in real-time processing for protocol recognition with identification of the used cipher suite. The use of neural networks to recognize the industrial protocol and encryption set used enables big data processing with minimal time overhead to perform traffic classification. Packet-by-packet classification allows the detection of changes made to the industrial protocol, the use of a new protocol in the network, or the tunneling of traffic through another protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信