OpenAI Gym环境中基于actor - critical的强化学习和早期停止的精度-时间高效超参数优化

Albert Budi Christian, Chih-Yu Lin, Y. Tseng, Lan-Da Van, Wan-Hsun Hu, Chia-Hsuan Yu
{"title":"OpenAI Gym环境中基于actor - critical的强化学习和早期停止的精度-时间高效超参数优化","authors":"Albert Budi Christian, Chih-Yu Lin, Y. Tseng, Lan-Da Van, Wan-Hsun Hu, Chia-Hsuan Yu","doi":"10.1109/IoTaIS56727.2022.9975984","DOIUrl":null,"url":null,"abstract":"In this paper, we present accuracy-time efficient hyperparameter optimization (HPO) using advantage actor-critic (A2C)-based reinforcement learning (RL) and early stopping in OpenAI Gym environment. The A2C RL can improve the hyperparameter selection such that the resulting accuracy of machine learning (ML) algorithms including XGBoost, support vector classifier (SVC), random forest shows comparable. According to the specified accuracy of the ML algorithms, the early stopping scheme can save the computation cost. Ten standard datasets are used to valid the accuracy-time efficient HPO. Experimental results show that the presented accuracy-efficient HPO architecture can improve 0.77% accuracy on average compared with default hyperparameter for random forest. The early stopping can save 64% computation cost on average compared to without early stopping for random forest.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy-Time Efficient Hyperparameter Optimization Using Actor-Critic-based Reinforcement Learning and Early Stopping in OpenAI Gym Environment\",\"authors\":\"Albert Budi Christian, Chih-Yu Lin, Y. Tseng, Lan-Da Van, Wan-Hsun Hu, Chia-Hsuan Yu\",\"doi\":\"10.1109/IoTaIS56727.2022.9975984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present accuracy-time efficient hyperparameter optimization (HPO) using advantage actor-critic (A2C)-based reinforcement learning (RL) and early stopping in OpenAI Gym environment. The A2C RL can improve the hyperparameter selection such that the resulting accuracy of machine learning (ML) algorithms including XGBoost, support vector classifier (SVC), random forest shows comparable. According to the specified accuracy of the ML algorithms, the early stopping scheme can save the computation cost. Ten standard datasets are used to valid the accuracy-time efficient HPO. Experimental results show that the presented accuracy-efficient HPO architecture can improve 0.77% accuracy on average compared with default hyperparameter for random forest. The early stopping can save 64% computation cost on average compared to without early stopping for random forest.\",\"PeriodicalId\":138894,\"journal\":{\"name\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTaIS56727.2022.9975984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在OpenAI Gym环境中使用基于优势actor-critic (A2C)的强化学习(RL)和早期停止提出了精度-时间高效的超参数优化(HPO)。A2C RL可以改进超参数选择,从而使机器学习(ML)算法(包括XGBoost,支持向量分类器(SVC),随机森林)的准确度显示出可比性。根据机器学习算法的精度要求,提前停止方案可以节省计算量。使用10个标准数据集对精度-时间高效HPO进行了验证。实验结果表明,与随机森林的默认超参数相比,所提出的HPO结构的准确率平均提高了0.77%。对于随机森林,提前停止比不提前停止平均节省64%的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy-Time Efficient Hyperparameter Optimization Using Actor-Critic-based Reinforcement Learning and Early Stopping in OpenAI Gym Environment
In this paper, we present accuracy-time efficient hyperparameter optimization (HPO) using advantage actor-critic (A2C)-based reinforcement learning (RL) and early stopping in OpenAI Gym environment. The A2C RL can improve the hyperparameter selection such that the resulting accuracy of machine learning (ML) algorithms including XGBoost, support vector classifier (SVC), random forest shows comparable. According to the specified accuracy of the ML algorithms, the early stopping scheme can save the computation cost. Ten standard datasets are used to valid the accuracy-time efficient HPO. Experimental results show that the presented accuracy-efficient HPO architecture can improve 0.77% accuracy on average compared with default hyperparameter for random forest. The early stopping can save 64% computation cost on average compared to without early stopping for random forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信