快速子空间跟踪的近似功率迭代

R. Badeau, G. Richard, B. David, K. Abed-Meraim
{"title":"快速子空间跟踪的近似功率迭代","authors":"R. Badeau, G. Richard, B. David, K. Abed-Meraim","doi":"10.1109/ISSPA.2003.1224944","DOIUrl":null,"url":null,"abstract":"This paper introduces a fast implementation of the power iterations method for subspace tracking, based on an approximation less restrictive than the well-known projection approximation. This algorithm guarantees the orthonormality of the estimated subspace-weighting matrix at each iteration, and satisfies a global and exponential convergence property. Moreover, it outperforms many subspace trackers related to the power method, such as PAST. NIC, NP3 and OPAST, while keeping the same computational complexity.","PeriodicalId":264814,"journal":{"name":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Approximated power iterations for fast subspace tracking\",\"authors\":\"R. Badeau, G. Richard, B. David, K. Abed-Meraim\",\"doi\":\"10.1109/ISSPA.2003.1224944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a fast implementation of the power iterations method for subspace tracking, based on an approximation less restrictive than the well-known projection approximation. This algorithm guarantees the orthonormality of the estimated subspace-weighting matrix at each iteration, and satisfies a global and exponential convergence property. Moreover, it outperforms many subspace trackers related to the power method, such as PAST. NIC, NP3 and OPAST, while keeping the same computational complexity.\",\"PeriodicalId\":264814,\"journal\":{\"name\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2003.1224944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2003.1224944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文介绍了一种快速实现子空间跟踪的幂次迭代方法,该方法基于一种比众所周知的投影近似约束更少的近似。该算法保证了每次迭代估计的子空间加权矩阵的正交性,并满足全局和指数收敛性。此外,它还优于许多与功率方法相关的子空间跟踪器,如PAST。NIC, NP3和OPAST,同时保持相同的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximated power iterations for fast subspace tracking
This paper introduces a fast implementation of the power iterations method for subspace tracking, based on an approximation less restrictive than the well-known projection approximation. This algorithm guarantees the orthonormality of the estimated subspace-weighting matrix at each iteration, and satisfies a global and exponential convergence property. Moreover, it outperforms many subspace trackers related to the power method, such as PAST. NIC, NP3 and OPAST, while keeping the same computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信