拉格朗日基的近似GCD

Leili Rafiee Sevyeri, Robert M Corless
{"title":"拉格朗日基的近似GCD","authors":"Leili Rafiee Sevyeri, Robert M Corless","doi":"10.1109/SYNASC51798.2020.00018","DOIUrl":null,"url":null,"abstract":"For a pair of polynomials with real or complex coefficients, given in any particular basis, the problem of finding their GCD is known to be ill-posed. An answer is still desired for many applications, however. Hence, looking for a GCD of so-called approximate polynomials where this term explicitly denotes small uncertainties in the coefficients has received significant attention in the field of hybrid symbolic-numeric computation. In this paper we give an algorithm, based on one of Victor Ya. Pan, to find an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial, cluster the roots of each polynomial to identify multiple roots, and then “marry” the two polynomials to find their GCD. At no point do we change to the monomial basis, thus preserving the good conditioning properties of the original Lagrange basis. We discuss advantages and drawbacks of this method. The computational cost is dominated by the rootfinding step; unless special-purpose eigenvalue algorithms are used, the cost is cubic in the degrees of the polynomials. In principle, this cost could be reduced but we do not do so here.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate GCD in Lagrange bases\",\"authors\":\"Leili Rafiee Sevyeri, Robert M Corless\",\"doi\":\"10.1109/SYNASC51798.2020.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a pair of polynomials with real or complex coefficients, given in any particular basis, the problem of finding their GCD is known to be ill-posed. An answer is still desired for many applications, however. Hence, looking for a GCD of so-called approximate polynomials where this term explicitly denotes small uncertainties in the coefficients has received significant attention in the field of hybrid symbolic-numeric computation. In this paper we give an algorithm, based on one of Victor Ya. Pan, to find an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial, cluster the roots of each polynomial to identify multiple roots, and then “marry” the two polynomials to find their GCD. At no point do we change to the monomial basis, thus preserving the good conditioning properties of the original Lagrange basis. We discuss advantages and drawbacks of this method. The computational cost is dominated by the rootfinding step; unless special-purpose eigenvalue algorithms are used, the cost is cubic in the degrees of the polynomials. In principle, this cost could be reduced but we do not do so here.\",\"PeriodicalId\":278104,\"journal\":{\"name\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC51798.2020.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于任意给定的实系数或复系数的多项式对,求其GCD的问题已知是不适定的。然而,许多应用程序仍然需要一个答案。因此,寻找所谓的近似多项式的GCD,其中该项明确表示系数中的小不确定性,在混合符号-数值计算领域受到了极大的关注。本文给出了一种基于Victor Ya的算法。在拉格朗日基下,找到一对近似多项式的近似GCD。更准确地说,我们假设这些多项式是由它们在不同的已知点上的近似值给出的。我们首先通过使用每个多项式的拉格朗日基伴侣矩阵找到它们的每个根,将每个多项式的根聚类以识别多个根,然后将两个多项式“结婚”以找到它们的GCD。在任何情况下,我们都不改变为单项式基,从而保持了原始拉格朗日基的良好调理性质。讨论了该方法的优缺点。计算成本主要由寻根步骤决定;除非使用特殊目的的特征值算法,否则代价在多项式的度数上是三次的。原则上,这个成本是可以降低的,但我们在这里没有这样做。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate GCD in Lagrange bases
For a pair of polynomials with real or complex coefficients, given in any particular basis, the problem of finding their GCD is known to be ill-posed. An answer is still desired for many applications, however. Hence, looking for a GCD of so-called approximate polynomials where this term explicitly denotes small uncertainties in the coefficients has received significant attention in the field of hybrid symbolic-numeric computation. In this paper we give an algorithm, based on one of Victor Ya. Pan, to find an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial, cluster the roots of each polynomial to identify multiple roots, and then “marry” the two polynomials to find their GCD. At no point do we change to the monomial basis, thus preserving the good conditioning properties of the original Lagrange basis. We discuss advantages and drawbacks of this method. The computational cost is dominated by the rootfinding step; unless special-purpose eigenvalue algorithms are used, the cost is cubic in the degrees of the polynomials. In principle, this cost could be reduced but we do not do so here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信