对于恒星来说,动态重建问题的解决方案很弱。

Нина Николаевна Субботина, Nina Nikolaevna Subbotina, Е. А. Крупенников, Evgenii Alexandrovich Krupennikov
{"title":"对于恒星来说,动态重建问题的解决方案很弱。","authors":"Нина Николаевна Субботина, Nina Nikolaevna Subbotina, Е. А. Крупенников, Evgenii Alexandrovich Krupennikov","doi":"10.4213/tm4220","DOIUrl":null,"url":null,"abstract":"Рассматривается задача динамической реконструкции управлений для детерминированных управляемых аффинных систем. Реконструкция производится в реальном времени по известным дискретным неточным замерам наблюдаемой траектории системы, порождаемой неизвестным измеримым управлением со значениями из заданного компактного множества. Приводится корректная постановка задачи реконструкции в слабом со звездой смысле, и предлагается ее решение с помощью вариационного подхода, развиваемого авторами. Этот подход использует вспомогательные вариационные задачи с выпукло-вогнутым лагранжианом, регуляризированным по Тихонову. При этом решение задачи реконструкции сводится к интегрированию гамильтоновых систем обыкновенных дифференциальных уравнений. Приведены условия согласования параметров аппроксимации (параметров точности и частоты замеров траектории, а также вспомогательного регуляризирующего параметра). Показано, что при выполнении этих условий реконструированные управления ограничены, а порождаемые ими траектории динамической системы равномерно сходятся к наблюдаемой траектории.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Слабое со звездой решение задачи динамической реконструкции\",\"authors\":\"Нина Николаевна Субботина, Nina Nikolaevna Subbotina, Е. А. Крупенников, Evgenii Alexandrovich Krupennikov\",\"doi\":\"10.4213/tm4220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Рассматривается задача динамической реконструкции управлений для детерминированных управляемых аффинных систем. Реконструкция производится в реальном времени по известным дискретным неточным замерам наблюдаемой траектории системы, порождаемой неизвестным измеримым управлением со значениями из заданного компактного множества. Приводится корректная постановка задачи реконструкции в слабом со звездой смысле, и предлагается ее решение с помощью вариационного подхода, развиваемого авторами. Этот подход использует вспомогательные вариационные задачи с выпукло-вогнутым лагранжианом, регуляризированным по Тихонову. При этом решение задачи реконструкции сводится к интегрированию гамильтоновых систем обыкновенных дифференциальных уравнений. Приведены условия согласования параметров аппроксимации (параметров точности и частоты замеров траектории, а также вспомогательного регуляризирующего параметра). Показано, что при выполнении этих условий реконструированные управления ограничены, а порождаемые ими траектории динамической системы равномерно сходятся к наблюдаемой траектории.\",\"PeriodicalId\":134662,\"journal\":{\"name\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tm4220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

正在考虑动态地为决定论控制的仿射系统重建管理。在已知的离散不精确轨迹测量中进行实时重建,由未知的可测量控制产生,具有给定集的值。对意义之星的重建目标进行了正确的调整,并提出了一种不同的方法来解决这个问题。这种方法使用了带有凸起凹形拉格朗日函数的辅助变量问题,并以安静的方式调节。在这种情况下,重建任务的解决办法是集成哈密顿微分方程系统。这些条件是协调近似参数(轨迹测量精度和频率参数以及辅助调节参数)。在这些条件下,重建控制是有限的,它们产生的动态系统轨迹与观察到的轨迹是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Слабое со звездой решение задачи динамической реконструкции
Рассматривается задача динамической реконструкции управлений для детерминированных управляемых аффинных систем. Реконструкция производится в реальном времени по известным дискретным неточным замерам наблюдаемой траектории системы, порождаемой неизвестным измеримым управлением со значениями из заданного компактного множества. Приводится корректная постановка задачи реконструкции в слабом со звездой смысле, и предлагается ее решение с помощью вариационного подхода, развиваемого авторами. Этот подход использует вспомогательные вариационные задачи с выпукло-вогнутым лагранжианом, регуляризированным по Тихонову. При этом решение задачи реконструкции сводится к интегрированию гамильтоновых систем обыкновенных дифференциальных уравнений. Приведены условия согласования параметров аппроксимации (параметров точности и частоты замеров траектории, а также вспомогательного регуляризирующего параметра). Показано, что при выполнении этих условий реконструированные управления ограничены, а порождаемые ими траектории динамической системы равномерно сходятся к наблюдаемой траектории.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信