基于rss的三维定位中基于深度学习的几何解释鲁棒化

H. M. Le, D. Slock, J. Rossi
{"title":"基于rss的三维定位中基于深度学习的几何解释鲁棒化","authors":"H. M. Le, D. Slock, J. Rossi","doi":"10.1109/MELECON53508.2022.9842872","DOIUrl":null,"url":null,"abstract":"Received Signal Strength (RSS) is ubiquitous in wireless communications. Despite the low accuracy, it is still attractive because of the simplicity and the ready availability in nearly every wireless system without any additional hardware or software required. This paper develops a geometric interpretation of trilateration in RSS-based 3D localization, which is presented in a previous paper but in 2D scenarios. In addition, to correct the final estimates, an iterative Maximum Likelihood (ML) estimator for position estimation is presented. The Artificial Neural Networks (ANNs) are then applied in estimating the related parameters to robustify the performance of the algorithm. When compared to earlier methods, simulation results demonstrate a considerable boost in performance.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning to Robustify a Geometric Interpretation of Trilateration for 3D RSS-based Localization\",\"authors\":\"H. M. Le, D. Slock, J. Rossi\",\"doi\":\"10.1109/MELECON53508.2022.9842872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received Signal Strength (RSS) is ubiquitous in wireless communications. Despite the low accuracy, it is still attractive because of the simplicity and the ready availability in nearly every wireless system without any additional hardware or software required. This paper develops a geometric interpretation of trilateration in RSS-based 3D localization, which is presented in a previous paper but in 2D scenarios. In addition, to correct the final estimates, an iterative Maximum Likelihood (ML) estimator for position estimation is presented. The Artificial Neural Networks (ANNs) are then applied in estimating the related parameters to robustify the performance of the algorithm. When compared to earlier methods, simulation results demonstrate a considerable boost in performance.\",\"PeriodicalId\":303656,\"journal\":{\"name\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON53508.2022.9842872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9842872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

接收信号强度(RSS)在无线通信中无处不在。尽管精度较低,但它仍然具有吸引力,因为它的简单性和可用性几乎适用于所有无线系统,而无需任何额外的硬件或软件。本文开发了基于rss的三维定位中三边测量的几何解释,这是在之前的论文中提出的,但在2D场景中。此外,为了修正最终估计,提出了一种迭代的最大似然估计器用于位置估计。然后应用人工神经网络(ann)来估计相关参数,以增强算法的鲁棒性。与早期的方法相比,仿真结果显示性能有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning to Robustify a Geometric Interpretation of Trilateration for 3D RSS-based Localization
Received Signal Strength (RSS) is ubiquitous in wireless communications. Despite the low accuracy, it is still attractive because of the simplicity and the ready availability in nearly every wireless system without any additional hardware or software required. This paper develops a geometric interpretation of trilateration in RSS-based 3D localization, which is presented in a previous paper but in 2D scenarios. In addition, to correct the final estimates, an iterative Maximum Likelihood (ML) estimator for position estimation is presented. The Artificial Neural Networks (ANNs) are then applied in estimating the related parameters to robustify the performance of the algorithm. When compared to earlier methods, simulation results demonstrate a considerable boost in performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信