基于蜜蜂交配优化的活动轮廓模型改进

Zhonghai Li, Xiang Man, Jianguo Cui
{"title":"基于蜜蜂交配优化的活动轮廓模型改进","authors":"Zhonghai Li, Xiang Man, Jianguo Cui","doi":"10.1109/CCDC.2014.6853122","DOIUrl":null,"url":null,"abstract":"This paper improves the HBMO-SNAKE algorithm. The way is to adjust step of original algorithm as well as replace model parameters. The improved model choose queen flying speed simulate active contour energy and uses mating probability formula to calculate probability candidate control points are selected. The improved model also through calculating the fitness value of candidate control points to decide whether or not to replace the control points. This approach avoids the random number, mutation ratio and mutation variation generated when choose candidate control points. Therefore, the improved model solves the problems that original algorithm parameter redundancy and algorithm slow execution speed, so that the efficiency of the image edge detection substantially increased.","PeriodicalId":380818,"journal":{"name":"The 26th Chinese Control and Decision Conference (2014 CCDC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Active Contour Model by using the honey bee mating optimization\",\"authors\":\"Zhonghai Li, Xiang Man, Jianguo Cui\",\"doi\":\"10.1109/CCDC.2014.6853122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper improves the HBMO-SNAKE algorithm. The way is to adjust step of original algorithm as well as replace model parameters. The improved model choose queen flying speed simulate active contour energy and uses mating probability formula to calculate probability candidate control points are selected. The improved model also through calculating the fitness value of candidate control points to decide whether or not to replace the control points. This approach avoids the random number, mutation ratio and mutation variation generated when choose candidate control points. Therefore, the improved model solves the problems that original algorithm parameter redundancy and algorithm slow execution speed, so that the efficiency of the image edge detection substantially increased.\",\"PeriodicalId\":380818,\"journal\":{\"name\":\"The 26th Chinese Control and Decision Conference (2014 CCDC)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 26th Chinese Control and Decision Conference (2014 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2014.6853122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 26th Chinese Control and Decision Conference (2014 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2014.6853122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对HBMO-SNAKE算法进行了改进。方法是调整原算法步长,替换模型参数。改进后的模型选择后飞行速度,模拟活动轮廓能量,并利用配对概率公式计算选择候选控制点的概率。改进后的模型还通过计算候选控制点的适应度值来决定是否替换控制点。该方法避免了选择候选控制点时产生的随机数、突变率和突变变异。因此,改进后的模型解决了原算法参数冗余和算法执行速度慢的问题,使图像边缘检测的效率大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Active Contour Model by using the honey bee mating optimization
This paper improves the HBMO-SNAKE algorithm. The way is to adjust step of original algorithm as well as replace model parameters. The improved model choose queen flying speed simulate active contour energy and uses mating probability formula to calculate probability candidate control points are selected. The improved model also through calculating the fitness value of candidate control points to decide whether or not to replace the control points. This approach avoids the random number, mutation ratio and mutation variation generated when choose candidate control points. Therefore, the improved model solves the problems that original algorithm parameter redundancy and algorithm slow execution speed, so that the efficiency of the image edge detection substantially increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信