在gpu上处理异构异步运行时系统中的全局数据依赖关系

B. Peterson, A. Humphrey, John A. Schmidt, M. Berzins
{"title":"在gpu上处理异构异步运行时系统中的全局数据依赖关系","authors":"B. Peterson, A. Humphrey, John A. Schmidt, M. Berzins","doi":"10.1145/3152041.3152082","DOIUrl":null,"url":null,"abstract":"Large-scale parallel applications with complex global data dependencies beyond those of reductions pose significant scalability challenges in an asynchronous runtime system. Internodal challenges include identifying the all-to-all communication of data dependencies among the nodes. Intranodal challenges include gathering together these data dependencies into usable data objects while avoiding data duplication. This paper addresses these challenges within the context of a large-scale, industrial coal boiler simulation using the Uintah asynchronous many-task runtime system on GPU architectures. We show significant reduction in time spent analyzing data dependencies through refinements in our dependency search algorithm. Multiple task graphs are used to eliminate subsequent analysis when task graphs change in predictable and repeatable ways. Using a combined data store and task scheduler redesign reduces data dependency duplication ensuring that problems fit within host and GPU memory. These modifications did not require any changes to application code or sweeping changes to the Uintah runtime system. We report results running on the DOE Titan system on 119K CPU cores and 7.5K GPUs simultaneously. Our solutions can be generalized to other task dependency problems with global dependencies among thousands of nodes which must be processed efficiently at large scale.","PeriodicalId":102432,"journal":{"name":"Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Addressing Global Data Dependencies in Heterogeneous Asynchronous Runtime Systems on GPUs\",\"authors\":\"B. Peterson, A. Humphrey, John A. Schmidt, M. Berzins\",\"doi\":\"10.1145/3152041.3152082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale parallel applications with complex global data dependencies beyond those of reductions pose significant scalability challenges in an asynchronous runtime system. Internodal challenges include identifying the all-to-all communication of data dependencies among the nodes. Intranodal challenges include gathering together these data dependencies into usable data objects while avoiding data duplication. This paper addresses these challenges within the context of a large-scale, industrial coal boiler simulation using the Uintah asynchronous many-task runtime system on GPU architectures. We show significant reduction in time spent analyzing data dependencies through refinements in our dependency search algorithm. Multiple task graphs are used to eliminate subsequent analysis when task graphs change in predictable and repeatable ways. Using a combined data store and task scheduler redesign reduces data dependency duplication ensuring that problems fit within host and GPU memory. These modifications did not require any changes to application code or sweeping changes to the Uintah runtime system. We report results running on the DOE Titan system on 119K CPU cores and 7.5K GPUs simultaneously. Our solutions can be generalized to other task dependency problems with global dependencies among thousands of nodes which must be processed efficiently at large scale.\",\"PeriodicalId\":102432,\"journal\":{\"name\":\"Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3152041.3152082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152041.3152082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在异步运行时系统中,具有复杂全局数据依赖关系的大规模并行应用程序对可伸缩性构成了重大挑战。节点间的挑战包括识别节点间数据依赖的全对全通信。节点内的挑战包括将这些数据依赖关系收集到可用的数据对象中,同时避免数据重复。本文在使用GPU架构上的untah异步多任务运行时系统进行大规模工业燃煤锅炉仿真的背景下解决了这些挑战。通过改进依赖项搜索算法,我们可以显著减少分析数据依赖项所花费的时间。当任务图以可预测和可重复的方式变化时,使用多个任务图来消除后续分析。使用组合的数据存储和任务调度器重新设计减少了数据依赖重复,确保问题适合主机和GPU内存。这些修改不需要对应用程序代码进行任何更改,也不需要对linux运行时系统进行全面更改。我们报告了在DOE Titan系统上同时运行119K CPU内核和7.5K gpu的结果。我们的解决方案可以推广到其他需要大规模高效处理的具有全局依赖关系的任务依赖问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing Global Data Dependencies in Heterogeneous Asynchronous Runtime Systems on GPUs
Large-scale parallel applications with complex global data dependencies beyond those of reductions pose significant scalability challenges in an asynchronous runtime system. Internodal challenges include identifying the all-to-all communication of data dependencies among the nodes. Intranodal challenges include gathering together these data dependencies into usable data objects while avoiding data duplication. This paper addresses these challenges within the context of a large-scale, industrial coal boiler simulation using the Uintah asynchronous many-task runtime system on GPU architectures. We show significant reduction in time spent analyzing data dependencies through refinements in our dependency search algorithm. Multiple task graphs are used to eliminate subsequent analysis when task graphs change in predictable and repeatable ways. Using a combined data store and task scheduler redesign reduces data dependency duplication ensuring that problems fit within host and GPU memory. These modifications did not require any changes to application code or sweeping changes to the Uintah runtime system. We report results running on the DOE Titan system on 119K CPU cores and 7.5K GPUs simultaneously. Our solutions can be generalized to other task dependency problems with global dependencies among thousands of nodes which must be processed efficiently at large scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信