双时间尺度动态多层神经网络自适应非线性系统辨识

Zhijun Fu, W. Xie, Sining Liu
{"title":"双时间尺度动态多层神经网络自适应非线性系统辨识","authors":"Zhijun Fu, W. Xie, Sining Liu","doi":"10.1109/CCA.2013.6662884","DOIUrl":null,"url":null,"abstract":"This paper presents a novel adaptive identification method for nonlinear systems including the aspects of fast and slow phenomenon via dynamic multilayer neural networks with two-time scales. The Lyapunov function and singularly perturbed techniques are used to develop the learning procedure for the hidden layers and output layers of the dynamic neural networks model. Novel correction terms are proposed in the learning algorithm to guarantee bounded tracking errors and bounded weights. The effectiveness of the algorithm is illustrated via the simulation results on an electric induction motor.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive nonlinear systems identification via dynamic multilayer neural networks with two-time scales\",\"authors\":\"Zhijun Fu, W. Xie, Sining Liu\",\"doi\":\"10.1109/CCA.2013.6662884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel adaptive identification method for nonlinear systems including the aspects of fast and slow phenomenon via dynamic multilayer neural networks with two-time scales. The Lyapunov function and singularly perturbed techniques are used to develop the learning procedure for the hidden layers and output layers of the dynamic neural networks model. Novel correction terms are proposed in the learning algorithm to guarantee bounded tracking errors and bounded weights. The effectiveness of the algorithm is illustrated via the simulation results on an electric induction motor.\",\"PeriodicalId\":379739,\"journal\":{\"name\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2013.6662884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于双时间尺度动态多层神经网络的非线性系统快速和慢速自适应辨识方法。利用李雅普诺夫函数和奇摄动技术开发了动态神经网络模型的隐藏层和输出层的学习过程。在学习算法中提出了新的校正项,以保证有界跟踪误差和有界权值。通过对异步电动机的仿真,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive nonlinear systems identification via dynamic multilayer neural networks with two-time scales
This paper presents a novel adaptive identification method for nonlinear systems including the aspects of fast and slow phenomenon via dynamic multilayer neural networks with two-time scales. The Lyapunov function and singularly perturbed techniques are used to develop the learning procedure for the hidden layers and output layers of the dynamic neural networks model. Novel correction terms are proposed in the learning algorithm to guarantee bounded tracking errors and bounded weights. The effectiveness of the algorithm is illustrated via the simulation results on an electric induction motor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信