医用可穿戴贴片天线的研制

A. Za'aba, S. Ibrahim, N. A. Malek, Athirah Mohd Ramly
{"title":"医用可穿戴贴片天线的研制","authors":"A. Za'aba, S. Ibrahim, N. A. Malek, Athirah Mohd Ramly","doi":"10.1109/RSM.2017.8069166","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a flexible antenna made of Polydimethylsiloxane (PDMS) and Copper (Cu) patch. The antenna comprises of Cu tape as the patch and ground plane, PDMS composite as the substrate and SMA connector as the coaxial feed with dimensions of 21.5mm patch radius, 60×60×3 mm3 substrate area and 60×60 mm2 ground plane area. In this study, we also create a PDMS+glass microsphere composite as substitute to the PDMS substrate. The PDMS+glass inclusion reduces PDMS's relative permittivity and loss tangent to 1.9 and 0.014 respectively which could enhance antenna's performance. To overcome adhesiveness issue between Cu patch and PDMS substrate, the antenna was encapsulated with another thin layer of PDMS/PDMS+glass substrate of 0.6mm thickness to ensure a constant distance from the ground plane. CST software was used to simulate antenna resonance frequency prior to the fabrication. Measurements using a Vector Network Analyzer (VNA) showed that the PDMS substrate antennas resonated at 1.92 GHz (without encapsulation) and 2.34 GHz (with encapsulation) while the PDMS+glass substrate antennas resonated at 2.46 GHz (without encapsulation) and 2.25 GHz (with encapsulation) respectively. Here, we also discussed the effect of substrate on return loss. Overall, results obtained from the measurements are in agreement with the simulation results.","PeriodicalId":215909,"journal":{"name":"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Development of wearable patch antenna for medical application\",\"authors\":\"A. Za'aba, S. Ibrahim, N. A. Malek, Athirah Mohd Ramly\",\"doi\":\"10.1109/RSM.2017.8069166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of a flexible antenna made of Polydimethylsiloxane (PDMS) and Copper (Cu) patch. The antenna comprises of Cu tape as the patch and ground plane, PDMS composite as the substrate and SMA connector as the coaxial feed with dimensions of 21.5mm patch radius, 60×60×3 mm3 substrate area and 60×60 mm2 ground plane area. In this study, we also create a PDMS+glass microsphere composite as substitute to the PDMS substrate. The PDMS+glass inclusion reduces PDMS's relative permittivity and loss tangent to 1.9 and 0.014 respectively which could enhance antenna's performance. To overcome adhesiveness issue between Cu patch and PDMS substrate, the antenna was encapsulated with another thin layer of PDMS/PDMS+glass substrate of 0.6mm thickness to ensure a constant distance from the ground plane. CST software was used to simulate antenna resonance frequency prior to the fabrication. Measurements using a Vector Network Analyzer (VNA) showed that the PDMS substrate antennas resonated at 1.92 GHz (without encapsulation) and 2.34 GHz (with encapsulation) while the PDMS+glass substrate antennas resonated at 2.46 GHz (without encapsulation) and 2.25 GHz (with encapsulation) respectively. Here, we also discussed the effect of substrate on return loss. Overall, results obtained from the measurements are in agreement with the simulation results.\",\"PeriodicalId\":215909,\"journal\":{\"name\":\"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2017.8069166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2017.8069166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种由聚二甲基硅氧烷(PDMS)和铜(Cu)贴片制成的柔性天线的研制。该天线由Cu带作为贴片和接地面,PDMS复合材料作为衬底,SMA连接器作为同轴馈线组成,贴片半径为21.5mm,衬底面积为60×60×3 mm3,接地面面积为60×60 mm2。在本研究中,我们还创建了PDMS+玻璃微球复合材料作为PDMS基板的替代品。PDMS+玻璃包体将PDMS的相对介电常数和损耗正切分别降低到1.9和0.014,提高了天线的性能。为了克服Cu贴片与PDMS基板之间的粘附性问题,天线采用另一层厚度为0.6mm的PDMS/PDMS+玻璃基板封装,以保证天线与地平面的距离恒定。在制作之前,使用CST软件模拟天线谐振频率。利用矢量网络分析仪(VNA)测量,PDMS基板天线的谐振频率分别为1.92 GHz(未封装)和2.34 GHz(封装),而PDMS+玻璃基板天线的谐振频率分别为2.46 GHz(未封装)和2.25 GHz(封装)。本文还讨论了衬底对回波损耗的影响。总体而言,测量结果与模拟结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of wearable patch antenna for medical application
This paper presents the development of a flexible antenna made of Polydimethylsiloxane (PDMS) and Copper (Cu) patch. The antenna comprises of Cu tape as the patch and ground plane, PDMS composite as the substrate and SMA connector as the coaxial feed with dimensions of 21.5mm patch radius, 60×60×3 mm3 substrate area and 60×60 mm2 ground plane area. In this study, we also create a PDMS+glass microsphere composite as substitute to the PDMS substrate. The PDMS+glass inclusion reduces PDMS's relative permittivity and loss tangent to 1.9 and 0.014 respectively which could enhance antenna's performance. To overcome adhesiveness issue between Cu patch and PDMS substrate, the antenna was encapsulated with another thin layer of PDMS/PDMS+glass substrate of 0.6mm thickness to ensure a constant distance from the ground plane. CST software was used to simulate antenna resonance frequency prior to the fabrication. Measurements using a Vector Network Analyzer (VNA) showed that the PDMS substrate antennas resonated at 1.92 GHz (without encapsulation) and 2.34 GHz (with encapsulation) while the PDMS+glass substrate antennas resonated at 2.46 GHz (without encapsulation) and 2.25 GHz (with encapsulation) respectively. Here, we also discussed the effect of substrate on return loss. Overall, results obtained from the measurements are in agreement with the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信