基于合成数据生成管道的工业环境中目标姿态估计

Manuel Belke, P. Blanke, S. Storms, W. Herfs
{"title":"基于合成数据生成管道的工业环境中目标姿态估计","authors":"Manuel Belke, P. Blanke, S. Storms, W. Herfs","doi":"10.1109/IRC55401.2022.00084","DOIUrl":null,"url":null,"abstract":"The handling of objects is a crucial robotic skill for the automation of the production industry. The trend to use machine learning to estimate the 6D pose of objects is driven by higher robustness and faster processing times. Machine-learning based 6D pose estimation algorithms are available with varying estimation performance, robustness and flexibility. Suitable algorithms have to be selected based on use-case specific production requirements. A concept to evaluate these algorithms is presented. The generation of synthetic data based on the production requirements is proposed, followed by an evaluation of the algorithms to assess the generalization performance from generic benchmark datasets to custom industrial datasets. The overall pipeline is presented, realized and discussed.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object pose estimation in industrial environments using a synthetic data generation pipeline\",\"authors\":\"Manuel Belke, P. Blanke, S. Storms, W. Herfs\",\"doi\":\"10.1109/IRC55401.2022.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The handling of objects is a crucial robotic skill for the automation of the production industry. The trend to use machine learning to estimate the 6D pose of objects is driven by higher robustness and faster processing times. Machine-learning based 6D pose estimation algorithms are available with varying estimation performance, robustness and flexibility. Suitable algorithms have to be selected based on use-case specific production requirements. A concept to evaluate these algorithms is presented. The generation of synthetic data based on the production requirements is proposed, followed by an evaluation of the algorithms to assess the generalization performance from generic benchmark datasets to custom industrial datasets. The overall pipeline is presented, realized and discussed.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

搬运物品是生产工业自动化的一项关键机器人技能。使用机器学习来估计物体的6D姿态的趋势是由更高的鲁棒性和更快的处理时间驱动的。基于机器学习的6D姿态估计算法具有不同的估计性能,鲁棒性和灵活性。必须根据特定于用例的生产需求选择合适的算法。提出了一个评价这些算法的概念。提出了基于生产需求的合成数据的生成,然后对算法进行了评估,以评估从通用基准数据集到定制工业数据集的泛化性能。对整个流水线进行了介绍、实现和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object pose estimation in industrial environments using a synthetic data generation pipeline
The handling of objects is a crucial robotic skill for the automation of the production industry. The trend to use machine learning to estimate the 6D pose of objects is driven by higher robustness and faster processing times. Machine-learning based 6D pose estimation algorithms are available with varying estimation performance, robustness and flexibility. Suitable algorithms have to be selected based on use-case specific production requirements. A concept to evaluate these algorithms is presented. The generation of synthetic data based on the production requirements is proposed, followed by an evaluation of the algorithms to assess the generalization performance from generic benchmark datasets to custom industrial datasets. The overall pipeline is presented, realized and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信