剩余使用寿命估计的多路径并行混合深度神经网络框架

Ali Al-Dulaimi, A. Asif, Arash Mohammadi
{"title":"剩余使用寿命估计的多路径并行混合深度神经网络框架","authors":"Ali Al-Dulaimi, A. Asif, Arash Mohammadi","doi":"10.1109/ICPHM49022.2020.9187040","DOIUrl":null,"url":null,"abstract":"The paper introduces a multi-path parallel hybrid deep neural design for remaining useful life (RUL) estimation of critical infrastructure, referred to as the MPHD. The proposed framework integrates three noisy deep learning structures in parallel: (a) A noisy path uses Long Short-Term Memory (LSTM), (b) A noisy path uses Gated Recurrent Unit (GRU), and; (c) A noisy path uses Convolutional Neural Network (CNN), The proposed framework aims to collect different types of features from the most popular deep neural networks architectures and then utilizing a fusion center consists of noisy fully connected multilayer neural network, to combine the collected features of the three parallel paths and predict the RLU. The MPHD framework utilizes noisy training to improve accuracy, enhance robustness, and mitigate the overfitting problem associated with neural networks. The proposed model is evaluated by utilizing (CMAPSS) dataset, which is provided by NASA.","PeriodicalId":148899,"journal":{"name":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multipath Parallel Hybrid Deep Neural Networks Framework for Remaining Useful Life Estimation\",\"authors\":\"Ali Al-Dulaimi, A. Asif, Arash Mohammadi\",\"doi\":\"10.1109/ICPHM49022.2020.9187040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a multi-path parallel hybrid deep neural design for remaining useful life (RUL) estimation of critical infrastructure, referred to as the MPHD. The proposed framework integrates three noisy deep learning structures in parallel: (a) A noisy path uses Long Short-Term Memory (LSTM), (b) A noisy path uses Gated Recurrent Unit (GRU), and; (c) A noisy path uses Convolutional Neural Network (CNN), The proposed framework aims to collect different types of features from the most popular deep neural networks architectures and then utilizing a fusion center consists of noisy fully connected multilayer neural network, to combine the collected features of the three parallel paths and predict the RLU. The MPHD framework utilizes noisy training to improve accuracy, enhance robustness, and mitigate the overfitting problem associated with neural networks. The proposed model is evaluated by utilizing (CMAPSS) dataset, which is provided by NASA.\",\"PeriodicalId\":148899,\"journal\":{\"name\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM49022.2020.9187040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM49022.2020.9187040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种用于关键基础设施剩余使用寿命(RUL)估计的多路径并行混合深度神经网络设计,简称MPHD。所提出的框架并行集成了三种噪声深度学习结构:(a)噪声路径使用长短期记忆(LSTM), (b)噪声路径使用门控循环单元(GRU),以及;(c)噪声路径使用卷积神经网络(CNN),提出的框架旨在从最流行的深度神经网络架构中收集不同类型的特征,然后利用一个由噪声全连接多层神经网络组成的融合中心,将收集到的三个并行路径的特征结合起来,并预测RLU。MPHD框架利用噪声训练来提高准确性,增强鲁棒性,并减轻与神经网络相关的过拟合问题。利用NASA提供的(CMAPSS)数据集对该模型进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipath Parallel Hybrid Deep Neural Networks Framework for Remaining Useful Life Estimation
The paper introduces a multi-path parallel hybrid deep neural design for remaining useful life (RUL) estimation of critical infrastructure, referred to as the MPHD. The proposed framework integrates three noisy deep learning structures in parallel: (a) A noisy path uses Long Short-Term Memory (LSTM), (b) A noisy path uses Gated Recurrent Unit (GRU), and; (c) A noisy path uses Convolutional Neural Network (CNN), The proposed framework aims to collect different types of features from the most popular deep neural networks architectures and then utilizing a fusion center consists of noisy fully connected multilayer neural network, to combine the collected features of the three parallel paths and predict the RLU. The MPHD framework utilizes noisy training to improve accuracy, enhance robustness, and mitigate the overfitting problem associated with neural networks. The proposed model is evaluated by utilizing (CMAPSS) dataset, which is provided by NASA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信