基于矩阵分解技术的数据聚类无线传播图重构

Junting Chen, U. Mitra
{"title":"基于矩阵分解技术的数据聚类无线传播图重构","authors":"Junting Chen, U. Mitra","doi":"10.1109/SSP.2018.8450795","DOIUrl":null,"url":null,"abstract":"This paper develops an efficient data clustering technique by transforming and compressing the measurement data to a low-dimensional feature matrix, based on which, matrix factorization techniques can be applied to extract the key parameters for data clustering. For the application of wireless propagation map reconstruction, a theoretical result is developed to justify that the feature matrix is a composite of several unimodal matrices, each containing key parameters for an individual propagation region. As a result, instead of iterating with $N$ data points at each step, the proposed scheme provides a low complexity online solution for data clustering based on the feature matrix with dimension much smaller than $N.$","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data Clustering Using Matrix Factorization Techniques for Wireless Propagation Map Reconstruction\",\"authors\":\"Junting Chen, U. Mitra\",\"doi\":\"10.1109/SSP.2018.8450795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an efficient data clustering technique by transforming and compressing the measurement data to a low-dimensional feature matrix, based on which, matrix factorization techniques can be applied to extract the key parameters for data clustering. For the application of wireless propagation map reconstruction, a theoretical result is developed to justify that the feature matrix is a composite of several unimodal matrices, each containing key parameters for an individual propagation region. As a result, instead of iterating with $N$ data points at each step, the proposed scheme provides a low complexity online solution for data clustering based on the feature matrix with dimension much smaller than $N.$\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种高效的数据聚类技术,将测量数据转换压缩为低维特征矩阵,在此基础上,利用矩阵分解技术提取数据聚类的关键参数。对于无线传播映射重建的应用,提出了一个理论结果,证明了特征矩阵是几个单峰矩阵的复合,每个单峰矩阵包含一个单独的传播区域的关键参数。因此,该方案为基于维度远小于$N$的特征矩阵的数据聚类提供了一种低复杂度的在线解决方案,而不是每步迭代$N$数据点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Clustering Using Matrix Factorization Techniques for Wireless Propagation Map Reconstruction
This paper develops an efficient data clustering technique by transforming and compressing the measurement data to a low-dimensional feature matrix, based on which, matrix factorization techniques can be applied to extract the key parameters for data clustering. For the application of wireless propagation map reconstruction, a theoretical result is developed to justify that the feature matrix is a composite of several unimodal matrices, each containing key parameters for an individual propagation region. As a result, instead of iterating with $N$ data points at each step, the proposed scheme provides a low complexity online solution for data clustering based on the feature matrix with dimension much smaller than $N.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信