基于边缘检测和颜色分析的侵入火成岩薄片图像无监督分类

Silvia Joseph, Hamimah Ujir, I. Hipiny
{"title":"基于边缘检测和颜色分析的侵入火成岩薄片图像无监督分类","authors":"Silvia Joseph, Hamimah Ujir, I. Hipiny","doi":"10.1109/ICSIPA.2017.8120669","DOIUrl":null,"url":null,"abstract":"Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Unsupervised classification of Intrusive igneous rock thin section images using edge detection and colour analysis\",\"authors\":\"Silvia Joseph, Hamimah Ujir, I. Hipiny\",\"doi\":\"10.1109/ICSIPA.2017.8120669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

岩石分类是地质研究的基本任务之一。这个过程需要一个人类专家在显微镜下检查取样的薄片图像。在本研究中,我们提出了一种利用显微镜自动化、数字图像采集、边缘检测和颜色分析(直方图)的方法。我们使用安装在传统显微镜上的数码相机从20个标准薄片上收集了60张数字图像。每个图像被分割成有限数量的单元格,形成网格结构。每个单元内像素的边缘和颜色配置文件决定其分类。然后,单个细胞通过多数投票方案确定薄切片图像分类。我们的方法获得了高达90%至100%精度的成功结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised classification of Intrusive igneous rock thin section images using edge detection and colour analysis
Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信