基于交叉熵的图像垃圾检测

M. Wang, Weifeng Zhang, Yingzhou Zhang, XiaoHua Ji
{"title":"基于交叉熵的图像垃圾检测","authors":"M. Wang, Weifeng Zhang, Yingzhou Zhang, XiaoHua Ji","doi":"10.1109/WISA.2011.11","DOIUrl":null,"url":null,"abstract":"To detect image spam effectively, it is necessary to analyze the image content. We do research on the local invariant features of images, and thus propose a novel method: near-duplicate image spam detecting based on CE (cross entropy), in which the SURF (Speeded up Robust Features) is used to extract the local invariant features of each image (spam and ham); then the GMM (Gaussian Mixture Models) of local invariant features are fitted. Using CE as the distance measurement between Gaussian distributions, we improve the Kmeans to cluster the GMMs since our dataset is very large. Experiments show that using CE as the distance measurement is beneficial, and the proposed method achieves better performance than some existing methods, the precision of the method can get up to 96%.","PeriodicalId":242633,"journal":{"name":"2011 Eighth Web Information Systems and Applications Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detecting Image Spam Based on Cross Entropy\",\"authors\":\"M. Wang, Weifeng Zhang, Yingzhou Zhang, XiaoHua Ji\",\"doi\":\"10.1109/WISA.2011.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To detect image spam effectively, it is necessary to analyze the image content. We do research on the local invariant features of images, and thus propose a novel method: near-duplicate image spam detecting based on CE (cross entropy), in which the SURF (Speeded up Robust Features) is used to extract the local invariant features of each image (spam and ham); then the GMM (Gaussian Mixture Models) of local invariant features are fitted. Using CE as the distance measurement between Gaussian distributions, we improve the Kmeans to cluster the GMMs since our dataset is very large. Experiments show that using CE as the distance measurement is beneficial, and the proposed method achieves better performance than some existing methods, the precision of the method can get up to 96%.\",\"PeriodicalId\":242633,\"journal\":{\"name\":\"2011 Eighth Web Information Systems and Applications Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2011.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了有效地检测垃圾图像,必须对图像内容进行分析。对图像的局部不变性特征进行了研究,提出了一种基于交叉熵的近重复图像垃圾检测方法,该方法利用SURF(加速鲁棒特征)提取每个图像(spam和ham)的局部不变性特征;然后对局部不变特征的高斯混合模型进行拟合。使用CE作为高斯分布之间的距离度量,由于我们的数据集非常大,我们改进了Kmeans来聚类gmm。实验表明,采用CE作为距离测量是有益的,所提方法的性能优于现有的一些方法,方法的精度可达96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Image Spam Based on Cross Entropy
To detect image spam effectively, it is necessary to analyze the image content. We do research on the local invariant features of images, and thus propose a novel method: near-duplicate image spam detecting based on CE (cross entropy), in which the SURF (Speeded up Robust Features) is used to extract the local invariant features of each image (spam and ham); then the GMM (Gaussian Mixture Models) of local invariant features are fitted. Using CE as the distance measurement between Gaussian distributions, we improve the Kmeans to cluster the GMMs since our dataset is very large. Experiments show that using CE as the distance measurement is beneficial, and the proposed method achieves better performance than some existing methods, the precision of the method can get up to 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信