复合材料压缩成型模腔和模芯的设计分析

Muslimin Al Masta
{"title":"复合材料压缩成型模腔和模芯的设计分析","authors":"Muslimin Al Masta","doi":"10.30811/jpl.v21i2.3311","DOIUrl":null,"url":null,"abstract":"This study discusses the design analysis of compression molding cavity and core under 12 tons of pressure and 100oC heat using experimental analysis and Ansys R19.2 simulation. This compression mold is used to process composite materials, mainly thermoset matrix composites. The compression product is a tensile test specimen according to the ASTM D638-4 standard. The main concern of this study aimed to analyze the stress distribution and deflection due to the compression load and heat on the cavity and core of compression molding. Hence, the die construction is safe during the operation under these loads. The analysis was carried out using Von Mises's stress of static loading criteria. The research parameter examined are stress distribution, deflection, and some critical dimensions in the cavity and core. These parameters significantly affect mold performance, product quality, and service life. Experimental analysis shows that the maximum deflection of the cavity and the core is 4.40 x10-4 mm and 1.53 x 10−4 mm, respectively. On the other hand, Simulation analysis shows the maximum deflection of the cavity and core is 4.56 x 10−4 mm and 7.41 x 10-5 mm, respectively. The error between experimental analysis and simulation is 6.87 x 10-5 mm and 3.32 x 10-5 mm for the cavity and the core, respectively. For stress analysis, the maximum value is 37.94 MPa for both cavity and core. On the other hand, simulation analysis shows 262 MPa and 256 MPa for the cavity and core, respectively. Both experimental analysis and simulation show that the result complies with the standard, less than 0,025 mm for deflection, and stress is less than 1034 MPa for maximum stress. Therefore, compression mold structure is safely used.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design analysis of mold cavity and core on compression molding of composite material\",\"authors\":\"Muslimin Al Masta\",\"doi\":\"10.30811/jpl.v21i2.3311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study discusses the design analysis of compression molding cavity and core under 12 tons of pressure and 100oC heat using experimental analysis and Ansys R19.2 simulation. This compression mold is used to process composite materials, mainly thermoset matrix composites. The compression product is a tensile test specimen according to the ASTM D638-4 standard. The main concern of this study aimed to analyze the stress distribution and deflection due to the compression load and heat on the cavity and core of compression molding. Hence, the die construction is safe during the operation under these loads. The analysis was carried out using Von Mises's stress of static loading criteria. The research parameter examined are stress distribution, deflection, and some critical dimensions in the cavity and core. These parameters significantly affect mold performance, product quality, and service life. Experimental analysis shows that the maximum deflection of the cavity and the core is 4.40 x10-4 mm and 1.53 x 10−4 mm, respectively. On the other hand, Simulation analysis shows the maximum deflection of the cavity and core is 4.56 x 10−4 mm and 7.41 x 10-5 mm, respectively. The error between experimental analysis and simulation is 6.87 x 10-5 mm and 3.32 x 10-5 mm for the cavity and the core, respectively. For stress analysis, the maximum value is 37.94 MPa for both cavity and core. On the other hand, simulation analysis shows 262 MPa and 256 MPa for the cavity and core, respectively. Both experimental analysis and simulation show that the result complies with the standard, less than 0,025 mm for deflection, and stress is less than 1034 MPa for maximum stress. Therefore, compression mold structure is safely used.\",\"PeriodicalId\":166128,\"journal\":{\"name\":\"Jurnal POLIMESIN\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal POLIMESIN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30811/jpl.v21i2.3311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal POLIMESIN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30811/jpl.v21i2.3311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用实验分析和Ansys R19.2仿真的方法,对12吨压力和100℃高温下的压缩成型型腔和芯进行了设计分析。本模具主要用于加工复合材料,主要是热固性基复合材料。压缩产物是按照ASTM D638-4标准进行拉伸试验的试样。本研究的主要目的是分析压缩成型型腔和型芯在压缩载荷和热作用下的应力分布和挠度。因此,在这些载荷下,模具结构是安全的。采用Von Mises的静载应力准则进行分析。研究参数包括应力分布、挠度以及空腔和岩心的一些关键尺寸。这些参数显著影响模具性能、产品质量和使用寿命。实验分析表明,腔体和芯体的最大挠度分别为4.40 × 10-4 mm和1.53 × 10-4 mm。另一方面,仿真分析表明,腔和芯的最大挠度分别为4.56 x 10- 4 mm和7.41 x 10-5 mm。实验分析与仿真结果的误差分别为6.87 × 10- 5mm和3.32 × 10- 5mm。在应力分析中,空腔和岩心的最大值均为37.94 MPa。另一方面,模拟分析表明,空腔和岩心分别为262 MPa和256 MPa。试验分析和仿真结果表明,试验结果符合标准,挠度小于0.025 mm,最大应力小于1034 MPa。因此,采用压模结构是安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design analysis of mold cavity and core on compression molding of composite material
This study discusses the design analysis of compression molding cavity and core under 12 tons of pressure and 100oC heat using experimental analysis and Ansys R19.2 simulation. This compression mold is used to process composite materials, mainly thermoset matrix composites. The compression product is a tensile test specimen according to the ASTM D638-4 standard. The main concern of this study aimed to analyze the stress distribution and deflection due to the compression load and heat on the cavity and core of compression molding. Hence, the die construction is safe during the operation under these loads. The analysis was carried out using Von Mises's stress of static loading criteria. The research parameter examined are stress distribution, deflection, and some critical dimensions in the cavity and core. These parameters significantly affect mold performance, product quality, and service life. Experimental analysis shows that the maximum deflection of the cavity and the core is 4.40 x10-4 mm and 1.53 x 10−4 mm, respectively. On the other hand, Simulation analysis shows the maximum deflection of the cavity and core is 4.56 x 10−4 mm and 7.41 x 10-5 mm, respectively. The error between experimental analysis and simulation is 6.87 x 10-5 mm and 3.32 x 10-5 mm for the cavity and the core, respectively. For stress analysis, the maximum value is 37.94 MPa for both cavity and core. On the other hand, simulation analysis shows 262 MPa and 256 MPa for the cavity and core, respectively. Both experimental analysis and simulation show that the result complies with the standard, less than 0,025 mm for deflection, and stress is less than 1034 MPa for maximum stress. Therefore, compression mold structure is safely used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信