一个可稳定的切换线性系统不一定存在光滑齐次李雅普诺夫函数

F. Blanchini, P. Colaneri, M. E. Valcher
{"title":"一个可稳定的切换线性系统不一定存在光滑齐次李雅普诺夫函数","authors":"F. Blanchini, P. Colaneri, M. E. Valcher","doi":"10.1109/CDC.2013.6760831","DOIUrl":null,"url":null,"abstract":"The contribution of this paper is twofold. Firstly, an example of a (positive) linear switched system that can be stabilized, via a controlled switching signal, but does not admit a smooth and positively homogeneous control Lyapunov function, is provided. The spectral properties of the subsystem matrices and of the Lyapunov candidates of the convex differential inclusion associated with the switched system, are thoroughly investigated. Secondly, by taking inspiration from the example, new feedback stabilization techniques for stabilizable positive switched systems are provided.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A stabilizable switched linear system does not necessarily admit a smooth homogeneous Lyapunov function\",\"authors\":\"F. Blanchini, P. Colaneri, M. E. Valcher\",\"doi\":\"10.1109/CDC.2013.6760831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contribution of this paper is twofold. Firstly, an example of a (positive) linear switched system that can be stabilized, via a controlled switching signal, but does not admit a smooth and positively homogeneous control Lyapunov function, is provided. The spectral properties of the subsystem matrices and of the Lyapunov candidates of the convex differential inclusion associated with the switched system, are thoroughly investigated. Secondly, by taking inspiration from the example, new feedback stabilization techniques for stabilizable positive switched systems are provided.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的贡献是双重的。首先,提供了一个(正)线性开关系统的例子,该系统可以通过控制开关信号来稳定,但不允许平滑和正齐次控制李雅普诺夫函数。研究了子系统矩阵和与切换系统相关的凸微分包含的Lyapunov候选矩阵的谱性质。其次,从实例中得到启发,给出了新的可稳定正开关系统的反馈镇定技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stabilizable switched linear system does not necessarily admit a smooth homogeneous Lyapunov function
The contribution of this paper is twofold. Firstly, an example of a (positive) linear switched system that can be stabilized, via a controlled switching signal, but does not admit a smooth and positively homogeneous control Lyapunov function, is provided. The spectral properties of the subsystem matrices and of the Lyapunov candidates of the convex differential inclusion associated with the switched system, are thoroughly investigated. Secondly, by taking inspiration from the example, new feedback stabilization techniques for stabilizable positive switched systems are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信