知识图嵌入的深度学习,用于Twitter对话框的语义分析

Larry Heck, Hongzhao Huang
{"title":"知识图嵌入的深度学习,用于Twitter对话框的语义分析","authors":"Larry Heck, Hongzhao Huang","doi":"10.1109/GlobalSIP.2014.7032187","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to learn neural knowledge graph embeddings. The embeddings are used to compute semantic relatedness in a coherence-based semantic parser. The approach learns embeddings directly from structured knowledge representations. A deep neural network approach known as Deep Structured Semantic Modeling (DSSM) is used to scale the approach to learn neural embeddings for all of the concepts (pages) of Wikipedia. Experiments on Twitter dialogs show a 23.6% reduction in semantic parsing errors compared to the state-of-the-art unsupervised approach.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Deep learning of knowledge graph embeddings for semantic parsing of Twitter dialogs\",\"authors\":\"Larry Heck, Hongzhao Huang\",\"doi\":\"10.1109/GlobalSIP.2014.7032187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to learn neural knowledge graph embeddings. The embeddings are used to compute semantic relatedness in a coherence-based semantic parser. The approach learns embeddings directly from structured knowledge representations. A deep neural network approach known as Deep Structured Semantic Modeling (DSSM) is used to scale the approach to learn neural embeddings for all of the concepts (pages) of Wikipedia. Experiments on Twitter dialogs show a 23.6% reduction in semantic parsing errors compared to the state-of-the-art unsupervised approach.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

提出了一种学习神经知识图嵌入的新方法。在基于一致性的语义解析器中,使用嵌入来计算语义相关性。该方法直接从结构化的知识表示中学习嵌入。一种称为深度结构化语义建模(DSSM)的深度神经网络方法被用于扩展该方法,以学习维基百科所有概念(页面)的神经嵌入。在Twitter对话框上的实验表明,与最先进的无监督方法相比,语义分析错误减少了23.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning of knowledge graph embeddings for semantic parsing of Twitter dialogs
This paper presents a novel method to learn neural knowledge graph embeddings. The embeddings are used to compute semantic relatedness in a coherence-based semantic parser. The approach learns embeddings directly from structured knowledge representations. A deep neural network approach known as Deep Structured Semantic Modeling (DSSM) is used to scale the approach to learn neural embeddings for all of the concepts (pages) of Wikipedia. Experiments on Twitter dialogs show a 23.6% reduction in semantic parsing errors compared to the state-of-the-art unsupervised approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信