{"title":"边缘缓存与喷泉代码","authors":"Estefanía Recayte, Francisco Lázaro, G. Liva","doi":"10.1109/ASMS-SPSC.2018.8510726","DOIUrl":null,"url":null,"abstract":"We address the use of linear random fountain coded caching schemes in a heterogeneous satellite network. We consider a system composed of multiple hubs and a geostationary Earth orbit satellite. Coded content is memorized in hubs’ caches in order to serve immediately the user requests and reduce the usage of the satellite backhaul link. We derive the analytical expression of the average backhaul rate, as well as a tight upper bound to it with a simple expression. Furthermore, we derive the optimal caching strategy which minimizes the average backhaul rate and compare the performance of the linear random fountain code scheme to that of a scheme using maximum distance separable codes. Our simulation results indicate that the performance obtained using fountain codes is similar to that of maximum distance separable codes.","PeriodicalId":362263,"journal":{"name":"2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Caching at the Edge with Fountain Codes\",\"authors\":\"Estefanía Recayte, Francisco Lázaro, G. Liva\",\"doi\":\"10.1109/ASMS-SPSC.2018.8510726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the use of linear random fountain coded caching schemes in a heterogeneous satellite network. We consider a system composed of multiple hubs and a geostationary Earth orbit satellite. Coded content is memorized in hubs’ caches in order to serve immediately the user requests and reduce the usage of the satellite backhaul link. We derive the analytical expression of the average backhaul rate, as well as a tight upper bound to it with a simple expression. Furthermore, we derive the optimal caching strategy which minimizes the average backhaul rate and compare the performance of the linear random fountain code scheme to that of a scheme using maximum distance separable codes. Our simulation results indicate that the performance obtained using fountain codes is similar to that of maximum distance separable codes.\",\"PeriodicalId\":362263,\"journal\":{\"name\":\"2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMS-SPSC.2018.8510726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMS-SPSC.2018.8510726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We address the use of linear random fountain coded caching schemes in a heterogeneous satellite network. We consider a system composed of multiple hubs and a geostationary Earth orbit satellite. Coded content is memorized in hubs’ caches in order to serve immediately the user requests and reduce the usage of the satellite backhaul link. We derive the analytical expression of the average backhaul rate, as well as a tight upper bound to it with a simple expression. Furthermore, we derive the optimal caching strategy which minimizes the average backhaul rate and compare the performance of the linear random fountain code scheme to that of a scheme using maximum distance separable codes. Our simulation results indicate that the performance obtained using fountain codes is similar to that of maximum distance separable codes.