大余量转换迁移学习

Brian Quanz, Jun Huan
{"title":"大余量转换迁移学习","authors":"Brian Quanz, Jun Huan","doi":"10.1145/1645953.1646121","DOIUrl":null,"url":null,"abstract":"Recently there has been increasing interest in the problem of transfer learning, in which the typical assumption that training and testing data are drawn from identical distributions is relaxed. We specifically address the problem of transductive transfer learning in which we have access to labeled training data and unlabeled testing data potentially drawn from different, yet related distributions, and the goal is to leverage the labeled training data to learn a classifier to correctly predict data from the testing distribution. We have derived efficient algorithms for transductive transfer learning based on a novel viewpoint and the Support Vector Machine (SVM) paradigm, of a large margin hyperplane classifier in a feature space. We show that our method can out-perform some recent state-of-the-art approaches for transfer learning on several data sets, with the added benefits of model and data separation and the potential to leverage existing work on support vector machines.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Large margin transductive transfer learning\",\"authors\":\"Brian Quanz, Jun Huan\",\"doi\":\"10.1145/1645953.1646121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently there has been increasing interest in the problem of transfer learning, in which the typical assumption that training and testing data are drawn from identical distributions is relaxed. We specifically address the problem of transductive transfer learning in which we have access to labeled training data and unlabeled testing data potentially drawn from different, yet related distributions, and the goal is to leverage the labeled training data to learn a classifier to correctly predict data from the testing distribution. We have derived efficient algorithms for transductive transfer learning based on a novel viewpoint and the Support Vector Machine (SVM) paradigm, of a large margin hyperplane classifier in a feature space. We show that our method can out-perform some recent state-of-the-art approaches for transfer learning on several data sets, with the added benefits of model and data separation and the potential to leverage existing work on support vector machines.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

最近,人们对迁移学习问题的兴趣越来越大,在迁移学习中,训练和测试数据来自相同分布的典型假设被放宽了。我们专门解决了转导迁移学习的问题,其中我们可以访问标记的训练数据和未标记的测试数据,这些数据可能来自不同但相关的分布,目标是利用标记的训练数据来学习分类器,以正确地预测来自测试分布的数据。我们基于一种新的观点和支持向量机(SVM)范式,在特征空间的大边界超平面分类器中推导了高效的转导迁移学习算法。我们表明,我们的方法可以在几个数据集上胜过一些最近最先进的迁移学习方法,并具有模型和数据分离的额外好处,以及利用支持向量机上现有工作的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large margin transductive transfer learning
Recently there has been increasing interest in the problem of transfer learning, in which the typical assumption that training and testing data are drawn from identical distributions is relaxed. We specifically address the problem of transductive transfer learning in which we have access to labeled training data and unlabeled testing data potentially drawn from different, yet related distributions, and the goal is to leverage the labeled training data to learn a classifier to correctly predict data from the testing distribution. We have derived efficient algorithms for transductive transfer learning based on a novel viewpoint and the Support Vector Machine (SVM) paradigm, of a large margin hyperplane classifier in a feature space. We show that our method can out-perform some recent state-of-the-art approaches for transfer learning on several data sets, with the added benefits of model and data separation and the potential to leverage existing work on support vector machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信