基于均匀模糊形态学梯度的噪声图像边缘检测

M. González-Hidalgo, A. M. Torres, Joan Torrens Sastre
{"title":"基于均匀模糊形态学梯度的噪声图像边缘检测","authors":"M. González-Hidalgo, A. M. Torres, Joan Torrens Sastre","doi":"10.1109/ISDA.2009.118","DOIUrl":null,"url":null,"abstract":"Medical images edge detection is one of the most important pre-processing steps in medical image segmentation and 3D reconstruction. In this paper, an edge detection algorithm using an uninorm-based fuzzy morphology is proposed. It is shown that this algorithm is robust when it is applied to different types of noisy images. It improves the results of other well-known algorithms including classical algorithms of edge detection, as well as fuzzy-morphology based ones using the {\\L}ukasiewicz t-norm and umbra approach. It detects detailed edge features and thin edges of medical images corrupted by impulse or gaussian noise. Moreover, some different objective measures have been used to evaluate the filtered results obtaining for our approach better values than for other approaches.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Noisy Image Edge Detection Using an Uninorm Fuzzy Morphological Gradient\",\"authors\":\"M. González-Hidalgo, A. M. Torres, Joan Torrens Sastre\",\"doi\":\"10.1109/ISDA.2009.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical images edge detection is one of the most important pre-processing steps in medical image segmentation and 3D reconstruction. In this paper, an edge detection algorithm using an uninorm-based fuzzy morphology is proposed. It is shown that this algorithm is robust when it is applied to different types of noisy images. It improves the results of other well-known algorithms including classical algorithms of edge detection, as well as fuzzy-morphology based ones using the {\\\\L}ukasiewicz t-norm and umbra approach. It detects detailed edge features and thin edges of medical images corrupted by impulse or gaussian noise. Moreover, some different objective measures have been used to evaluate the filtered results obtaining for our approach better values than for other approaches.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

医学图像边缘检测是医学图像分割和三维重建中最重要的预处理步骤之一。本文提出了一种基于均匀模糊形态学的边缘检测算法。结果表明,该算法对不同类型的噪声图像具有较强的鲁棒性。它改进了其他知名算法的结果,包括经典的边缘检测算法,以及使用{\L}ukasiewicz t-范数和本影方法的基于模糊形态学的算法。它可以检测受脉冲或高斯噪声破坏的医学图像的详细边缘特征和细边缘。此外,还使用了一些不同的客观度量来评估我们的方法所获得的过滤结果比其他方法更好的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noisy Image Edge Detection Using an Uninorm Fuzzy Morphological Gradient
Medical images edge detection is one of the most important pre-processing steps in medical image segmentation and 3D reconstruction. In this paper, an edge detection algorithm using an uninorm-based fuzzy morphology is proposed. It is shown that this algorithm is robust when it is applied to different types of noisy images. It improves the results of other well-known algorithms including classical algorithms of edge detection, as well as fuzzy-morphology based ones using the {\L}ukasiewicz t-norm and umbra approach. It detects detailed edge features and thin edges of medical images corrupted by impulse or gaussian noise. Moreover, some different objective measures have been used to evaluate the filtered results obtaining for our approach better values than for other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信