Rim Feyrouz Abdelgoui, R. Taleb, A. Bentaallah, F. Chabni
{"title":"基于差分进化的均匀步进九电平逆变器谐波消除:实验验证","authors":"Rim Feyrouz Abdelgoui, R. Taleb, A. Bentaallah, F. Chabni","doi":"10.53314/els2125031a","DOIUrl":null,"url":null,"abstract":"This study presents the application of differential evolution algorithm to compute optimal switching angles for a single-phase nine-level inverter to improve the output voltage quality. The topology of the proposed inverter in this article is a simple cascade converter composed of two H-bridge cells with non-equal DC voltage sources in order to generate multiple voltage levels. Selective harmonic elimination pulse width modulation strategy is used to improve the generated AC output voltage waveform. The differential evolution optimization algorithm is used to solve non-linear transcendental equations necessary for the (SHPWM). Computational results obtained from computer simulations presented a good agreement with the theoretical predictions. A laboratory prototype based on STM32F407 microcontroller was built in order to validate the simulation results. The experimental results show the effectiveness of the proposed modulation method.","PeriodicalId":290965,"journal":{"name":"Electronics ETF","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Elimination in Uniform Step Nine-Level Inverter Using Differential Evolution: Experimental Validation\",\"authors\":\"Rim Feyrouz Abdelgoui, R. Taleb, A. Bentaallah, F. Chabni\",\"doi\":\"10.53314/els2125031a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the application of differential evolution algorithm to compute optimal switching angles for a single-phase nine-level inverter to improve the output voltage quality. The topology of the proposed inverter in this article is a simple cascade converter composed of two H-bridge cells with non-equal DC voltage sources in order to generate multiple voltage levels. Selective harmonic elimination pulse width modulation strategy is used to improve the generated AC output voltage waveform. The differential evolution optimization algorithm is used to solve non-linear transcendental equations necessary for the (SHPWM). Computational results obtained from computer simulations presented a good agreement with the theoretical predictions. A laboratory prototype based on STM32F407 microcontroller was built in order to validate the simulation results. The experimental results show the effectiveness of the proposed modulation method.\",\"PeriodicalId\":290965,\"journal\":{\"name\":\"Electronics ETF\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics ETF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53314/els2125031a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics ETF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53314/els2125031a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harmonic Elimination in Uniform Step Nine-Level Inverter Using Differential Evolution: Experimental Validation
This study presents the application of differential evolution algorithm to compute optimal switching angles for a single-phase nine-level inverter to improve the output voltage quality. The topology of the proposed inverter in this article is a simple cascade converter composed of two H-bridge cells with non-equal DC voltage sources in order to generate multiple voltage levels. Selective harmonic elimination pulse width modulation strategy is used to improve the generated AC output voltage waveform. The differential evolution optimization algorithm is used to solve non-linear transcendental equations necessary for the (SHPWM). Computational results obtained from computer simulations presented a good agreement with the theoretical predictions. A laboratory prototype based on STM32F407 microcontroller was built in order to validate the simulation results. The experimental results show the effectiveness of the proposed modulation method.