J. Sánchez‐Torres, Martin J. Loza-Lopez, R. Ruiz-Cruz, E. Sánchez, A. Loukianov
{"title":"求解线性规划的简单递归神经网络:在微电网中的应用","authors":"J. Sánchez‐Torres, Martin J. Loza-Lopez, R. Ruiz-Cruz, E. Sánchez, A. Loukianov","doi":"10.1109/CIASG.2014.7011550","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A simple recurrent neural network for solution of linear programming: Application to a Microgrid\",\"authors\":\"J. Sánchez‐Torres, Martin J. Loza-Lopez, R. Ruiz-Cruz, E. Sánchez, A. Loukianov\",\"doi\":\"10.1109/CIASG.2014.7011550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.\",\"PeriodicalId\":166543,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIASG.2014.7011550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple recurrent neural network for solution of linear programming: Application to a Microgrid
The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.