求解线性规划的简单递归神经网络:在微电网中的应用

J. Sánchez‐Torres, Martin J. Loza-Lopez, R. Ruiz-Cruz, E. Sánchez, A. Loukianov
{"title":"求解线性规划的简单递归神经网络:在微电网中的应用","authors":"J. Sánchez‐Torres, Martin J. Loza-Lopez, R. Ruiz-Cruz, E. Sánchez, A. Loukianov","doi":"10.1109/CIASG.2014.7011550","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A simple recurrent neural network for solution of linear programming: Application to a Microgrid\",\"authors\":\"J. Sánchez‐Torres, Martin J. Loza-Lopez, R. Ruiz-Cruz, E. Sánchez, A. Loukianov\",\"doi\":\"10.1109/CIASG.2014.7011550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.\",\"PeriodicalId\":166543,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIASG.2014.7011550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是提出一类简单的新型递归神经网络,解决线性规划问题。将其视为滑模控制问题,其中网络结构基于Karush-Kuhn-Tucker (KKT)最优性条件,KKT乘子是基于单元控制的有限时间稳定项来实现的控制输入,而不是常用的激活函数。因此,本文提出的网络的主要特点是,尽管优化问题的维度是固定的,但参数数量是固定的,这意味着网络可以很容易地从小问题扩展到高维问题。通过一个微电网原型的实时优化,验证了该方案的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple recurrent neural network for solution of linear programming: Application to a Microgrid
The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信