基于混合模拟退火算法-遗传算法的水库优化调度

Yong-yong Zhang, Qiang Huang, Fan Gao, Xiao-yi Sun
{"title":"基于混合模拟退火算法-遗传算法的水库优化调度","authors":"Yong-yong Zhang, Qiang Huang, Fan Gao, Xiao-yi Sun","doi":"10.1109/BICTA.2010.5645168","DOIUrl":null,"url":null,"abstract":"A hybrid Simulated Annealing Algorithm-Genetic Algorithm is used to study the optimal reservoir operation. Then compared with other three methods, such as Genetic Algorithm, POA, and traditional Dynamic Programming, the proposed algorithm has much stronger ability of global search as well as better convergence property and can find the global optimization solution quickly. It is showed that hybrid Simulated Annealing Algorithm-Genetic Algorithm is an effective optimal algorithm and can be applied to the reservoir operation.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal reservoir operation using a hybrid Simulated Annealing Algorithm-Genetic Algorithm\",\"authors\":\"Yong-yong Zhang, Qiang Huang, Fan Gao, Xiao-yi Sun\",\"doi\":\"10.1109/BICTA.2010.5645168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid Simulated Annealing Algorithm-Genetic Algorithm is used to study the optimal reservoir operation. Then compared with other three methods, such as Genetic Algorithm, POA, and traditional Dynamic Programming, the proposed algorithm has much stronger ability of global search as well as better convergence property and can find the global optimization solution quickly. It is showed that hybrid Simulated Annealing Algorithm-Genetic Algorithm is an effective optimal algorithm and can be applied to the reservoir operation.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

采用模拟退火算法-遗传算法的混合算法研究水库最优调度问题。与遗传算法、POA算法和传统动态规划方法相比,该算法具有更强的全局搜索能力和更好的收敛性,能够快速找到全局最优解。结果表明,混合模拟退火算法-遗传算法是一种有效的优化算法,可应用于水库调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal reservoir operation using a hybrid Simulated Annealing Algorithm-Genetic Algorithm
A hybrid Simulated Annealing Algorithm-Genetic Algorithm is used to study the optimal reservoir operation. Then compared with other three methods, such as Genetic Algorithm, POA, and traditional Dynamic Programming, the proposed algorithm has much stronger ability of global search as well as better convergence property and can find the global optimization solution quickly. It is showed that hybrid Simulated Annealing Algorithm-Genetic Algorithm is an effective optimal algorithm and can be applied to the reservoir operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信