{"title":"稀疏多值输入决策函数的最小变量表示","authors":"Tsutomu Sasao","doi":"10.1109/ISMVL.2019.00039","DOIUrl":null,"url":null,"abstract":"A multiple-valued input decision function is a mapping <tex>$f:P^{\\mathrm{n}}\\rightarrow\\{0,1\\}$</tex>, where <tex>$P=\\{0,1,\\ \\ldots, p-1\\}$</tex>. This paper considers the learning of such a function. That is, given the TRUE-set <tex>$T\\subseteq P^{n}$</tex> and the FALSE-set <tex>$F\\subseteq P^{n}$</tex>, obtain a function <tex>$f$</tex> such that <tex>$f(\\vec{a})=1$</tex> for any <tex>$\\vec{a}\\in T$</tex>, and <tex>$f(\\vec{b})=0$</tex> for any <tex>$\\vec{b}\\in F$</tex>. We show a method to find a function such that <tex>$f$</tex> depends on the least number of variables. Applications of such functions include detection of poisonous mushrooms, hepatitis and breast cancer.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"78 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On a Minimization of Variables to Represent Sparse Multi-Valued Input Decision Functions\",\"authors\":\"Tsutomu Sasao\",\"doi\":\"10.1109/ISMVL.2019.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiple-valued input decision function is a mapping <tex>$f:P^{\\\\mathrm{n}}\\\\rightarrow\\\\{0,1\\\\}$</tex>, where <tex>$P=\\\\{0,1,\\\\ \\\\ldots, p-1\\\\}$</tex>. This paper considers the learning of such a function. That is, given the TRUE-set <tex>$T\\\\subseteq P^{n}$</tex> and the FALSE-set <tex>$F\\\\subseteq P^{n}$</tex>, obtain a function <tex>$f$</tex> such that <tex>$f(\\\\vec{a})=1$</tex> for any <tex>$\\\\vec{a}\\\\in T$</tex>, and <tex>$f(\\\\vec{b})=0$</tex> for any <tex>$\\\\vec{b}\\\\in F$</tex>. We show a method to find a function such that <tex>$f$</tex> depends on the least number of variables. Applications of such functions include detection of poisonous mushrooms, hepatitis and breast cancer.\",\"PeriodicalId\":329986,\"journal\":{\"name\":\"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"78 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2019.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a Minimization of Variables to Represent Sparse Multi-Valued Input Decision Functions
A multiple-valued input decision function is a mapping $f:P^{\mathrm{n}}\rightarrow\{0,1\}$, where $P=\{0,1,\ \ldots, p-1\}$. This paper considers the learning of such a function. That is, given the TRUE-set $T\subseteq P^{n}$ and the FALSE-set $F\subseteq P^{n}$, obtain a function $f$ such that $f(\vec{a})=1$ for any $\vec{a}\in T$, and $f(\vec{b})=0$ for any $\vec{b}\in F$. We show a method to find a function such that $f$ depends on the least number of variables. Applications of such functions include detection of poisonous mushrooms, hepatitis and breast cancer.