基于有效传输高度的SBTVD信号预测不同神经网络结构的比较

A. Pereira, I. Casella
{"title":"基于有效传输高度的SBTVD信号预测不同神经网络结构的比较","authors":"A. Pereira, I. Casella","doi":"10.1109/ISCE.2016.7797385","DOIUrl":null,"url":null,"abstract":"In this article, we propose three different neural networks architectures for predicting the received signal power of the Brazilian digital TV system based on the effective transmission heights for each frequency channel and the points of reception inside the coverage area. The presented models will be analyzed and compared with the main propagation models used for digital TV described in the scientific literature. An accurate estimate of the received signal is essential to ensure a good image quality of the digital TV sets of all customers of the system.","PeriodicalId":193736,"journal":{"name":"2016 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of different Neural Network architectures for SBTVD signal prediction based on effective transmission heights\",\"authors\":\"A. Pereira, I. Casella\",\"doi\":\"10.1109/ISCE.2016.7797385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose three different neural networks architectures for predicting the received signal power of the Brazilian digital TV system based on the effective transmission heights for each frequency channel and the points of reception inside the coverage area. The presented models will be analyzed and compared with the main propagation models used for digital TV described in the scientific literature. An accurate estimate of the received signal is essential to ensure a good image quality of the digital TV sets of all customers of the system.\",\"PeriodicalId\":193736,\"journal\":{\"name\":\"2016 IEEE International Symposium on Consumer Electronics (ISCE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Consumer Electronics (ISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2016.7797385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2016.7797385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了三种不同的神经网络架构,用于基于每个频率通道的有效传输高度和覆盖区域内的接收点来预测巴西数字电视系统的接收信号功率。所提出的模型将与科学文献中描述的用于数字电视的主要传播模型进行分析和比较。对接收到的信号进行准确的估计,对于确保系统中所有用户的数字电视都能获得良好的图像质量至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of different Neural Network architectures for SBTVD signal prediction based on effective transmission heights
In this article, we propose three different neural networks architectures for predicting the received signal power of the Brazilian digital TV system based on the effective transmission heights for each frequency channel and the points of reception inside the coverage area. The presented models will be analyzed and compared with the main propagation models used for digital TV described in the scientific literature. An accurate estimate of the received signal is essential to ensure a good image quality of the digital TV sets of all customers of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信