{"title":"三维CMOS-NEM FPGA结构与性能评价","authors":"Chen Dong, Chen Chen, S. Mitra, Deming Chen","doi":"10.1109/SLIP.2011.6135428","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a reconfigurable architecture, named 3D CMOS-NEM FPGA, which utilizes Nanoelectromechanical (NEM) relays and 3D integration techniques synergistically. Unique features of our architecture include: hybrid CMOS-NEM FPGA look-up tables (LUTs) and configurable logic blocks (CLBs), NEM-based switch blocks (SBs) and connection blocks (CBs), and face-to-face 3D stacking. This architecture also has a built-in feature named direct link which is dedicated local communication channel using the short vertical wire between the two stacks to further enhance performance. A customized 3D FPGA placement and routing flow has been developed. By replacing CMOS components with NEM relays, a 19.5% delay reduction can be achieved compared to the baseline 2D CMOS architecture. 3D stacking together with NEM devices achieves a 31.5% delay reduction over the baseline. The best performance of this architecture is achieved by adding direct links, which provides a 41.9% performance gain over the baseline.","PeriodicalId":189723,"journal":{"name":"International Workshop on System Level Interconnect Prediction","volume":"125 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Architecture and performance evaluation of 3D CMOS-NEM FPGA\",\"authors\":\"Chen Dong, Chen Chen, S. Mitra, Deming Chen\",\"doi\":\"10.1109/SLIP.2011.6135428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a reconfigurable architecture, named 3D CMOS-NEM FPGA, which utilizes Nanoelectromechanical (NEM) relays and 3D integration techniques synergistically. Unique features of our architecture include: hybrid CMOS-NEM FPGA look-up tables (LUTs) and configurable logic blocks (CLBs), NEM-based switch blocks (SBs) and connection blocks (CBs), and face-to-face 3D stacking. This architecture also has a built-in feature named direct link which is dedicated local communication channel using the short vertical wire between the two stacks to further enhance performance. A customized 3D FPGA placement and routing flow has been developed. By replacing CMOS components with NEM relays, a 19.5% delay reduction can be achieved compared to the baseline 2D CMOS architecture. 3D stacking together with NEM devices achieves a 31.5% delay reduction over the baseline. The best performance of this architecture is achieved by adding direct links, which provides a 41.9% performance gain over the baseline.\",\"PeriodicalId\":189723,\"journal\":{\"name\":\"International Workshop on System Level Interconnect Prediction\",\"volume\":\"125 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on System Level Interconnect Prediction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLIP.2011.6135428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on System Level Interconnect Prediction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLIP.2011.6135428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architecture and performance evaluation of 3D CMOS-NEM FPGA
In this paper, we introduce a reconfigurable architecture, named 3D CMOS-NEM FPGA, which utilizes Nanoelectromechanical (NEM) relays and 3D integration techniques synergistically. Unique features of our architecture include: hybrid CMOS-NEM FPGA look-up tables (LUTs) and configurable logic blocks (CLBs), NEM-based switch blocks (SBs) and connection blocks (CBs), and face-to-face 3D stacking. This architecture also has a built-in feature named direct link which is dedicated local communication channel using the short vertical wire between the two stacks to further enhance performance. A customized 3D FPGA placement and routing flow has been developed. By replacing CMOS components with NEM relays, a 19.5% delay reduction can be achieved compared to the baseline 2D CMOS architecture. 3D stacking together with NEM devices achieves a 31.5% delay reduction over the baseline. The best performance of this architecture is achieved by adding direct links, which provides a 41.9% performance gain over the baseline.