基于自组织图谱的局部蛋白质表面表征与分类

Lee Sael, D. Kihara
{"title":"基于自组织图谱的局部蛋白质表面表征与分类","authors":"Lee Sael, D. Kihara","doi":"10.4018/jkdb.2010100203","DOIUrl":null,"url":null,"abstract":"Annotating protein structures is an urgent task as increasing number of protein structures of unknown function is being solved. To achieve this goal, it is critical to establish computational methods for characterizing and classifying protein local structures. The authors analyzed the similarity of local surface patches from 609 representative proteins considering shape and the electrostatic potential, which are represented by the 3D Zernike descriptors. Classification of local patches is done with the emergent self-organizing map (ESOM). They mapped patches at ligand binding-sites to investigate how they distribute and cluster among the ESOM map. They obtained 30-50 clusters of local surfaces of different characteristics, which will be useful for annotating surface of proteins.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"30 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Characterization and Classification of Local Protein Surfaces Using Self-Organizing Map\",\"authors\":\"Lee Sael, D. Kihara\",\"doi\":\"10.4018/jkdb.2010100203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annotating protein structures is an urgent task as increasing number of protein structures of unknown function is being solved. To achieve this goal, it is critical to establish computational methods for characterizing and classifying protein local structures. The authors analyzed the similarity of local surface patches from 609 representative proteins considering shape and the electrostatic potential, which are represented by the 3D Zernike descriptors. Classification of local patches is done with the emergent self-organizing map (ESOM). They mapped patches at ligand binding-sites to investigate how they distribute and cluster among the ESOM map. They obtained 30-50 clusters of local surfaces of different characteristics, which will be useful for annotating surface of proteins.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"30 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2010100203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2010100203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着越来越多功能未知的蛋白质结构被解决,对蛋白质结构进行注释是一项紧迫的任务。为了实现这一目标,建立表征和分类蛋白质局部结构的计算方法至关重要。作者分析了609种代表性蛋白质的局部表面斑块的相似性,考虑形状和静电势,用三维Zernike描述符表示。局部斑块的分类是用紧急自组织映射(ESOM)完成的。他们绘制了配体结合位点的斑块,以研究它们如何在ESOM图谱中分布和聚集。他们获得了30-50个不同特征的局部表面簇,这将有助于蛋白质表面的注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and Classification of Local Protein Surfaces Using Self-Organizing Map
Annotating protein structures is an urgent task as increasing number of protein structures of unknown function is being solved. To achieve this goal, it is critical to establish computational methods for characterizing and classifying protein local structures. The authors analyzed the similarity of local surface patches from 609 representative proteins considering shape and the electrostatic potential, which are represented by the 3D Zernike descriptors. Classification of local patches is done with the emergent self-organizing map (ESOM). They mapped patches at ligand binding-sites to investigate how they distribute and cluster among the ESOM map. They obtained 30-50 clusters of local surfaces of different characteristics, which will be useful for annotating surface of proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信