一种减少同步的近似逆计算改进并行算法

G. Gravvanis, K. M. Giannoutakis
{"title":"一种减少同步的近似逆计算改进并行算法","authors":"G. Gravvanis, K. M. Giannoutakis","doi":"10.1109/ISPDC.2008.18","DOIUrl":null,"url":null,"abstract":"A new parallel algorithm, based on the concept of anti diagonal wave pattern, for computing approximate inverses, is introduced for symmetric multiprocessor systems. The parallel normalized approximate inverses are used in conjunction with parallel normalized preconditioned conjugate gradient-type schemes, for the efficient solution of sparse finite element linear systems. The parallel implementation issues of the new algorithm are discussed and the parallel performance is presented, using OpenMP.","PeriodicalId":125975,"journal":{"name":"2008 International Symposium on Parallel and Distributed Computing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Parallel Algorithm for Computing Approximate Inverses by Reducing Synchronizations\",\"authors\":\"G. Gravvanis, K. M. Giannoutakis\",\"doi\":\"10.1109/ISPDC.2008.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new parallel algorithm, based on the concept of anti diagonal wave pattern, for computing approximate inverses, is introduced for symmetric multiprocessor systems. The parallel normalized approximate inverses are used in conjunction with parallel normalized preconditioned conjugate gradient-type schemes, for the efficient solution of sparse finite element linear systems. The parallel implementation issues of the new algorithm are discussed and the parallel performance is presented, using OpenMP.\",\"PeriodicalId\":125975,\"journal\":{\"name\":\"2008 International Symposium on Parallel and Distributed Computing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2008.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2008.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对对称多处理器系统,提出了一种基于反对角波形概念的近似求逆并行算法。将并行归一化近似逆与并行归一化预条件共轭梯度型格式相结合,用于稀疏有限元线性系统的有效求解。讨论了新算法的并行实现问题,并给出了在OpenMP环境下的并行性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Parallel Algorithm for Computing Approximate Inverses by Reducing Synchronizations
A new parallel algorithm, based on the concept of anti diagonal wave pattern, for computing approximate inverses, is introduced for symmetric multiprocessor systems. The parallel normalized approximate inverses are used in conjunction with parallel normalized preconditioned conjugate gradient-type schemes, for the efficient solution of sparse finite element linear systems. The parallel implementation issues of the new algorithm are discussed and the parallel performance is presented, using OpenMP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信