{"title":"内分泌调节的脉冲古德温振荡模型:局部反馈导致多稳定性","authors":"Z. T. Zhusubaliyev, A. Medvedev, A. Proskurnikov","doi":"10.1109/EBCCSP53293.2021.9502366","DOIUrl":null,"url":null,"abstract":"The impulsive Goodwin’s oscillator (IGO) is a hybrid model that captures complex dynamics arising in continuous systems controlled by pulse-modulated (event-based) feedback. Being conceived to describe pulsatile endocrine regulation, it has also found applications in e.g. pharmacokinetics. The original version of the IGO assumes the continuous part of the model to be a chain of first-order blocks. This paper explores the nonlinear phenomena arising due to the introduction of a local continuous feedback as suggested by the endocrine applications. The effects caused by a nonlinear feedback law parameterized by a Hill function are compared to those arising due to a simpler and previously treated case of affine feedback law. The hybrid dynamics of the IGO are reduced to a (discrete) Poincaré map governing the propagation of the model’s continuous states through the firing instants of the impulsive feedback. Bifurcation analysis of the map reveals in particular that both the local Hill function and affine feedback can lead to multistability, which phenomenon has not been observed in the usual IGO model.","PeriodicalId":291826,"journal":{"name":"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","volume":"47 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impulsive Goodwin’s Oscillator Model of Endocrine Regulation: Local Feedback Leads to Multistability\",\"authors\":\"Z. T. Zhusubaliyev, A. Medvedev, A. Proskurnikov\",\"doi\":\"10.1109/EBCCSP53293.2021.9502366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impulsive Goodwin’s oscillator (IGO) is a hybrid model that captures complex dynamics arising in continuous systems controlled by pulse-modulated (event-based) feedback. Being conceived to describe pulsatile endocrine regulation, it has also found applications in e.g. pharmacokinetics. The original version of the IGO assumes the continuous part of the model to be a chain of first-order blocks. This paper explores the nonlinear phenomena arising due to the introduction of a local continuous feedback as suggested by the endocrine applications. The effects caused by a nonlinear feedback law parameterized by a Hill function are compared to those arising due to a simpler and previously treated case of affine feedback law. The hybrid dynamics of the IGO are reduced to a (discrete) Poincaré map governing the propagation of the model’s continuous states through the firing instants of the impulsive feedback. Bifurcation analysis of the map reveals in particular that both the local Hill function and affine feedback can lead to multistability, which phenomenon has not been observed in the usual IGO model.\",\"PeriodicalId\":291826,\"journal\":{\"name\":\"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"47 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP53293.2021.9502366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP53293.2021.9502366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impulsive Goodwin’s Oscillator Model of Endocrine Regulation: Local Feedback Leads to Multistability
The impulsive Goodwin’s oscillator (IGO) is a hybrid model that captures complex dynamics arising in continuous systems controlled by pulse-modulated (event-based) feedback. Being conceived to describe pulsatile endocrine regulation, it has also found applications in e.g. pharmacokinetics. The original version of the IGO assumes the continuous part of the model to be a chain of first-order blocks. This paper explores the nonlinear phenomena arising due to the introduction of a local continuous feedback as suggested by the endocrine applications. The effects caused by a nonlinear feedback law parameterized by a Hill function are compared to those arising due to a simpler and previously treated case of affine feedback law. The hybrid dynamics of the IGO are reduced to a (discrete) Poincaré map governing the propagation of the model’s continuous states through the firing instants of the impulsive feedback. Bifurcation analysis of the map reveals in particular that both the local Hill function and affine feedback can lead to multistability, which phenomenon has not been observed in the usual IGO model.