进化广义径向基函数的分类

A. Castaño, C. Hervás‐Martínez, Pedro Antonio Gutiérrez, F. Fernández-Navarro, M. M. García
{"title":"进化广义径向基函数的分类","authors":"A. Castaño, C. Hervás‐Martínez, Pedro Antonio Gutiérrez, F. Fernández-Navarro, M. M. García","doi":"10.1109/ISDA.2009.29","DOIUrl":null,"url":null,"abstract":"This paper proposes a novelty neural network model by using generalized kernel functions for the hidden layer of a feed forward network (Generalized Radial Basis Functions, GRBF), where the architecture, weights and node typology are learned through an evolutionary programming algorithm. This new kind of model is compared with the corresponding models with standard hidden nodes: Product Unit Neural Networks (PUNN), Multilayer Perceptrons (MLP) and the RBF neural networks. The methodology proposed is tested using six benchmark classification datasets from well-known machine learning problems. Generalized basis functions are found to present a better performance than the other standard basis functions for the task of classification.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"26 S2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification by Evolutionary Generalized Radial Basis Functions\",\"authors\":\"A. Castaño, C. Hervás‐Martínez, Pedro Antonio Gutiérrez, F. Fernández-Navarro, M. M. García\",\"doi\":\"10.1109/ISDA.2009.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novelty neural network model by using generalized kernel functions for the hidden layer of a feed forward network (Generalized Radial Basis Functions, GRBF), where the architecture, weights and node typology are learned through an evolutionary programming algorithm. This new kind of model is compared with the corresponding models with standard hidden nodes: Product Unit Neural Networks (PUNN), Multilayer Perceptrons (MLP) and the RBF neural networks. The methodology proposed is tested using six benchmark classification datasets from well-known machine learning problems. Generalized basis functions are found to present a better performance than the other standard basis functions for the task of classification.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"26 S2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种新颖的神经网络模型,将广义核函数用于前馈网络的隐层(generalized Radial Basis functions, GRBF),其中结构、权值和节点类型通过进化规划算法学习。将该模型与具有标准隐节点的产品单元神经网络(PUNN)、多层感知器(MLP)和RBF神经网络的相应模型进行了比较。使用来自知名机器学习问题的六个基准分类数据集对所提出的方法进行了测试。发现广义基函数在分类任务中表现出比其他标准基函数更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification by Evolutionary Generalized Radial Basis Functions
This paper proposes a novelty neural network model by using generalized kernel functions for the hidden layer of a feed forward network (Generalized Radial Basis Functions, GRBF), where the architecture, weights and node typology are learned through an evolutionary programming algorithm. This new kind of model is compared with the corresponding models with standard hidden nodes: Product Unit Neural Networks (PUNN), Multilayer Perceptrons (MLP) and the RBF neural networks. The methodology proposed is tested using six benchmark classification datasets from well-known machine learning problems. Generalized basis functions are found to present a better performance than the other standard basis functions for the task of classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信