{"title":"基于并行颜色编码和流的大型社交网络子图枚举","authors":"Zhao Zhao, Maleq Khan, V. S. A. Kumar, M. Marathe","doi":"10.1109/ICPP.2010.67","DOIUrl":null,"url":null,"abstract":"Identifying motifs (or commonly occurring subgraphs/templates) has been found to be useful in a number of applications, such as biological and social networks; they have been used to identify building blocks and functional properties, as well as to characterize the underlying networks. Enumerating subgraphs is a challenging computational problem, and all prior results have considered networks with a few thousand nodes. In this paper, we develop a parallel subgraph enumeration algorithm, ParSE, that scales to networks with millions of nodes. Our algorithm is a randomized approximation scheme, that estimates the subgraph frequency to any desired level of accuracy, and allows enumeration of a class of motifs that extends those considered in prior work. Our approach is based on parallelization of an approach called color coding, combined with a stream based partitioning. We also show that ParSE scales well with the number of processors, over a large range.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"15 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Subgraph Enumeration in Large Social Contact Networks Using Parallel Color Coding and Streaming\",\"authors\":\"Zhao Zhao, Maleq Khan, V. S. A. Kumar, M. Marathe\",\"doi\":\"10.1109/ICPP.2010.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying motifs (or commonly occurring subgraphs/templates) has been found to be useful in a number of applications, such as biological and social networks; they have been used to identify building blocks and functional properties, as well as to characterize the underlying networks. Enumerating subgraphs is a challenging computational problem, and all prior results have considered networks with a few thousand nodes. In this paper, we develop a parallel subgraph enumeration algorithm, ParSE, that scales to networks with millions of nodes. Our algorithm is a randomized approximation scheme, that estimates the subgraph frequency to any desired level of accuracy, and allows enumeration of a class of motifs that extends those considered in prior work. Our approach is based on parallelization of an approach called color coding, combined with a stream based partitioning. We also show that ParSE scales well with the number of processors, over a large range.\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"15 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subgraph Enumeration in Large Social Contact Networks Using Parallel Color Coding and Streaming
Identifying motifs (or commonly occurring subgraphs/templates) has been found to be useful in a number of applications, such as biological and social networks; they have been used to identify building blocks and functional properties, as well as to characterize the underlying networks. Enumerating subgraphs is a challenging computational problem, and all prior results have considered networks with a few thousand nodes. In this paper, we develop a parallel subgraph enumeration algorithm, ParSE, that scales to networks with millions of nodes. Our algorithm is a randomized approximation scheme, that estimates the subgraph frequency to any desired level of accuracy, and allows enumeration of a class of motifs that extends those considered in prior work. Our approach is based on parallelization of an approach called color coding, combined with a stream based partitioning. We also show that ParSE scales well with the number of processors, over a large range.