基于四叉树的非精确图匹配图像分析

Luís Augusto Consularo, R. M. C. Junior
{"title":"基于四叉树的非精确图匹配图像分析","authors":"Luís Augusto Consularo, R. M. C. Junior","doi":"10.1109/SIBGRAPI.2005.41","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for segmentation and recognition of image objects based on structural pattern recognition. The input image is decomposed into regions through a quadtree algorithm. The decomposed image is represented by an attributed relational graph (ARG) named input graph. The objects to be recognized are also stored in an ARG named model graph. Object segmentation and recognition are accomplished by matching the input graph to the model graph. The possible inexact matches between the two graphs are cliques of the association graph between them. An objective function, to be optimized, is defined for each clique in order to measure how suitable is the match between the graphs. Therefore, recognition is modeled as an optimization procedure. A beam-search algorithm is used to optimize the objective function. Experimental results corroborating the proposed approach are presented.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"16 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quadtree-Based Inexact Graph Matching for Image Analysis\",\"authors\":\"Luís Augusto Consularo, R. M. C. Junior\",\"doi\":\"10.1109/SIBGRAPI.2005.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for segmentation and recognition of image objects based on structural pattern recognition. The input image is decomposed into regions through a quadtree algorithm. The decomposed image is represented by an attributed relational graph (ARG) named input graph. The objects to be recognized are also stored in an ARG named model graph. Object segmentation and recognition are accomplished by matching the input graph to the model graph. The possible inexact matches between the two graphs are cliques of the association graph between them. An objective function, to be optimized, is defined for each clique in order to measure how suitable is the match between the graphs. Therefore, recognition is modeled as an optimization procedure. A beam-search algorithm is used to optimize the objective function. Experimental results corroborating the proposed approach are presented.\",\"PeriodicalId\":193103,\"journal\":{\"name\":\"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)\",\"volume\":\"16 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2005.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于结构模式识别的图像目标分割与识别新方法。通过四叉树算法对输入图像进行区域分解。分解后的图像由一个命名为输入图(input graph)的属性关系图(ARG)表示。要识别的对象也存储在一个名为模型图的ARG中。通过将输入图与模型图进行匹配,实现对目标的分割和识别。两个图之间可能的不精确匹配是它们之间关联图的团。为每个团定义一个待优化的目标函数,以衡量图之间匹配的合适程度。因此,识别被建模为一个优化过程。采用波束搜索算法对目标函数进行优化。实验结果证实了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadtree-Based Inexact Graph Matching for Image Analysis
This paper presents a new method for segmentation and recognition of image objects based on structural pattern recognition. The input image is decomposed into regions through a quadtree algorithm. The decomposed image is represented by an attributed relational graph (ARG) named input graph. The objects to be recognized are also stored in an ARG named model graph. Object segmentation and recognition are accomplished by matching the input graph to the model graph. The possible inexact matches between the two graphs are cliques of the association graph between them. An objective function, to be optimized, is defined for each clique in order to measure how suitable is the match between the graphs. Therefore, recognition is modeled as an optimization procedure. A beam-search algorithm is used to optimize the objective function. Experimental results corroborating the proposed approach are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信