无噪声广播信道的歧视性源编码

Leonard H. Grokop, A. Sahai, M. Gastpar
{"title":"无噪声广播信道的歧视性源编码","authors":"Leonard H. Grokop, A. Sahai, M. Gastpar","doi":"10.1109/ISIT.2005.1523296","DOIUrl":null,"url":null,"abstract":"We introduce a new problem of broadcast source coding with a discrimination requirement - there is an eavesdropping user from whom we wish to withhold the true message in an entropic sense. Binning can achieve the Slepian-Wolf rate, but at the cost of full information leakage to the eavesdropper. Our main result is a lower bound that implies that any entropically efficient broadcast scheme must be \"like binning\" in that it also must leak significant information to eavesdroppers","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Discriminatory source coding for a noiseless broadcast channel\",\"authors\":\"Leonard H. Grokop, A. Sahai, M. Gastpar\",\"doi\":\"10.1109/ISIT.2005.1523296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new problem of broadcast source coding with a discrimination requirement - there is an eavesdropping user from whom we wish to withhold the true message in an entropic sense. Binning can achieve the Slepian-Wolf rate, but at the cost of full information leakage to the eavesdropper. Our main result is a lower bound that implies that any entropically efficient broadcast scheme must be \\\"like binning\\\" in that it also must leak significant information to eavesdroppers\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们引入了一个带有鉴别要求的广播源编码新问题——存在一个窃听用户,我们希望从熵的意义上对其隐瞒真实信息。Binning可以达到“睡狼率”,但代价是信息完全泄露给了窃听者。我们的主要结果是一个下界,它意味着任何熵效率广播方案都必须“像开箱一样”,因为它也必须向窃听者泄露重要信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminatory source coding for a noiseless broadcast channel
We introduce a new problem of broadcast source coding with a discrimination requirement - there is an eavesdropping user from whom we wish to withhold the true message in an entropic sense. Binning can achieve the Slepian-Wolf rate, but at the cost of full information leakage to the eavesdropper. Our main result is a lower bound that implies that any entropically efficient broadcast scheme must be "like binning" in that it also must leak significant information to eavesdroppers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信