稀疏信号恢复学习迭代收缩阈值算法中的非线性函数

E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang
{"title":"稀疏信号恢复学习迭代收缩阈值算法中的非线性函数","authors":"E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang","doi":"10.1109/SiPS47522.2019.9020469","DOIUrl":null,"url":null,"abstract":"Compressive sensing requires fewer measurements than Nyquist rate to recover sparse signals, leading to processing and energy saving. The efficiency of this technique strongly depends on the quality of the considered sparse recovery algorithm. This work focuses on a learned iterative shrinkage-thresholding algorithm where iterations are related to layers of a neural network. We analyze the performance of this algorithm for different shrinkage functions. A decrease up to 9dB in the NMSE value is achieved by choosing appropriate shrinkage function. Moreover, the estimation performance can be close to the theoretical performance bound, showing deep learning as a promising tool for sparse signal estimation. This work can be applied in several areas such as image processing, Internet of Things (IoT), cognitive radio networks, and sparse channel estimation for wireless communications.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear Functions in Learned Iterative Shrinkage-Thresholding Algorithm for Sparse Signal Recovery\",\"authors\":\"E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang\",\"doi\":\"10.1109/SiPS47522.2019.9020469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing requires fewer measurements than Nyquist rate to recover sparse signals, leading to processing and energy saving. The efficiency of this technique strongly depends on the quality of the considered sparse recovery algorithm. This work focuses on a learned iterative shrinkage-thresholding algorithm where iterations are related to layers of a neural network. We analyze the performance of this algorithm for different shrinkage functions. A decrease up to 9dB in the NMSE value is achieved by choosing appropriate shrinkage function. Moreover, the estimation performance can be close to the theoretical performance bound, showing deep learning as a promising tool for sparse signal estimation. This work can be applied in several areas such as image processing, Internet of Things (IoT), cognitive radio networks, and sparse channel estimation for wireless communications.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

压缩感知需要比奈奎斯特速率更少的测量来恢复稀疏信号,从而实现处理和节能。该技术的效率很大程度上取决于所考虑的稀疏恢复算法的质量。这项工作的重点是学习迭代收缩阈值算法,其中迭代与神经网络的层相关。我们分析了该算法在不同收缩函数下的性能。通过选择合适的收缩函数,NMSE值降低了9dB。此外,估计性能可以接近理论性能界限,表明深度学习是一种很有前途的稀疏信号估计工具。这项工作可以应用于图像处理、物联网(IoT)、认知无线电网络和无线通信的稀疏信道估计等多个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Functions in Learned Iterative Shrinkage-Thresholding Algorithm for Sparse Signal Recovery
Compressive sensing requires fewer measurements than Nyquist rate to recover sparse signals, leading to processing and energy saving. The efficiency of this technique strongly depends on the quality of the considered sparse recovery algorithm. This work focuses on a learned iterative shrinkage-thresholding algorithm where iterations are related to layers of a neural network. We analyze the performance of this algorithm for different shrinkage functions. A decrease up to 9dB in the NMSE value is achieved by choosing appropriate shrinkage function. Moreover, the estimation performance can be close to the theoretical performance bound, showing deep learning as a promising tool for sparse signal estimation. This work can be applied in several areas such as image processing, Internet of Things (IoT), cognitive radio networks, and sparse channel estimation for wireless communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信