二维氮化镓单层的非磁性锗功能化磁性

S. Yadav, B. Agrawal, P. S. Yadav
{"title":"二维氮化镓单层的非磁性锗功能化磁性","authors":"S. Yadav, B. Agrawal, P. S. Yadav","doi":"10.56042/ijpap.v60i4.59698","DOIUrl":null,"url":null,"abstract":"Exotic properties are predicted to be functionalized by the adsorption of non-magnetic Ge atom on the two-dimensional GaN (2D–GaN) monolayer. They include the existence of spin filtering, high magnetism and continuous emission of electromagnetic radiation. A comprehensive ab-initio study of structural, electronic, magnetic and optical properties of 2D–GaN monolayer possessing several Ge atoms as adsorbents has been performed. We employ the norm-conserving pseudopotentials for atoms and plane waves in a generalised gradient approximation within density functional theory (DFT). The semiconducting pure GaN monolayer is converted into a metallic one in far 2-Ge atoms adsorbed above Ga in 2D-GaN monolayer systems. The behaviour of magnetism is found to be site-independent. The binding energies per adatom of the Ge-atoms adsorbed above N are larger than those of the Ge-atoms adsorbed above Ga atoms. Along with the main strong absorption lying in the ultraviolet region in all the Ge-adsorbed GaN monolayers, strong continuous absorption from the far infrared region to the visible region has been seen in some systems. These systems may be useful for development of light-emitting devices that will emit in various regions of the energy spectrum including visible region. The emission in the deep ultraviolet region may also be used for sterilization, water purification, etc.","PeriodicalId":209214,"journal":{"name":"Indian Journal of Pure & Applied Physics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-magnetic Ge Functionalized Magnetism in 2D-GaN Monolayer\",\"authors\":\"S. Yadav, B. Agrawal, P. S. Yadav\",\"doi\":\"10.56042/ijpap.v60i4.59698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exotic properties are predicted to be functionalized by the adsorption of non-magnetic Ge atom on the two-dimensional GaN (2D–GaN) monolayer. They include the existence of spin filtering, high magnetism and continuous emission of electromagnetic radiation. A comprehensive ab-initio study of structural, electronic, magnetic and optical properties of 2D–GaN monolayer possessing several Ge atoms as adsorbents has been performed. We employ the norm-conserving pseudopotentials for atoms and plane waves in a generalised gradient approximation within density functional theory (DFT). The semiconducting pure GaN monolayer is converted into a metallic one in far 2-Ge atoms adsorbed above Ga in 2D-GaN monolayer systems. The behaviour of magnetism is found to be site-independent. The binding energies per adatom of the Ge-atoms adsorbed above N are larger than those of the Ge-atoms adsorbed above Ga atoms. Along with the main strong absorption lying in the ultraviolet region in all the Ge-adsorbed GaN monolayers, strong continuous absorption from the far infrared region to the visible region has been seen in some systems. These systems may be useful for development of light-emitting devices that will emit in various regions of the energy spectrum including visible region. The emission in the deep ultraviolet region may also be used for sterilization, water purification, etc.\",\"PeriodicalId\":209214,\"journal\":{\"name\":\"Indian Journal of Pure & Applied Physics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure & Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v60i4.59698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v60i4.59698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测非磁性锗原子在二维氮化镓(2D-GaN)单层上的吸附可以实现奇异性质的功能化。它们包括自旋滤波的存在、高磁性和电磁辐射的连续发射。本文对含有多个锗原子作为吸附剂的二维氮化镓单层的结构、电子、磁性和光学性质进行了全面的从头算研究。我们在密度泛函理论(DFT)的广义梯度近似中采用了原子和平面波的范数守恒伪势。在二维氮化镓单层体系中,半导体纯氮化镓在远2-Ge原子上吸附为金属层。发现磁性的行为与位置无关。吸附在N原子上方的锗原子的结合能比吸附在Ga原子上方的锗原子的结合能大。在所有的锗吸附氮化镓单层中,除了主要的强吸收存在于紫外区外,在一些体系中还发现了从远红外区到可见光区的强连续吸收。这些系统可用于开发将在包括可见区域在内的能谱的各个区域发射的发光装置。深紫外区的辐射也可用于杀菌、水净化等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-magnetic Ge Functionalized Magnetism in 2D-GaN Monolayer
Exotic properties are predicted to be functionalized by the adsorption of non-magnetic Ge atom on the two-dimensional GaN (2D–GaN) monolayer. They include the existence of spin filtering, high magnetism and continuous emission of electromagnetic radiation. A comprehensive ab-initio study of structural, electronic, magnetic and optical properties of 2D–GaN monolayer possessing several Ge atoms as adsorbents has been performed. We employ the norm-conserving pseudopotentials for atoms and plane waves in a generalised gradient approximation within density functional theory (DFT). The semiconducting pure GaN monolayer is converted into a metallic one in far 2-Ge atoms adsorbed above Ga in 2D-GaN monolayer systems. The behaviour of magnetism is found to be site-independent. The binding energies per adatom of the Ge-atoms adsorbed above N are larger than those of the Ge-atoms adsorbed above Ga atoms. Along with the main strong absorption lying in the ultraviolet region in all the Ge-adsorbed GaN monolayers, strong continuous absorption from the far infrared region to the visible region has been seen in some systems. These systems may be useful for development of light-emitting devices that will emit in various regions of the energy spectrum including visible region. The emission in the deep ultraviolet region may also be used for sterilization, water purification, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信