遗传网络s系统建模的动态调节初始化

Jaskaran Gill, M. Chetty, Adrian B. R. Shatte, J. Hallinan
{"title":"遗传网络s系统建模的动态调节初始化","authors":"Jaskaran Gill, M. Chetty, Adrian B. R. Shatte, J. Hallinan","doi":"10.1109/CIBCB49929.2021.9562958","DOIUrl":null,"url":null,"abstract":"Reverse engineering of gene regulatory networks through temporal gene expression data is an active area of research. Among the plethora of modelling techniques under investigation is the decoupled S-system model, which attempts to capture the non-linearity of biological systems in detail. For the model, number of parameters to be estimated are significantly high even when the network is of small or medium scale. Thus, the inference process poses a significant computational burden. In this paper, we propose: (1) a novel population initialization technique, Dynamically Regulated Prediction Initialization (DRPI), which utilises prior knowledge of biological gene expression data to create a feedback loop to produce dynamically regulated high-quality individuals for initial population; (2) an adaptive fitness function; and (3) a method for the maintenance of population diversity. The aim of this work is to reduce the computational complexity of the inference algorithm, to speed up the entire process of reverse engineering. The performance of the proposed algorithm was evaluated against a benchmark dataset and compared with other methods from earlier work. The experimental results show that we succeeded in achieving higher accuracy results in lesser fitness evaluations, considerably reducing the computational burden of the inference process.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamically Regulated Initialization for S-system Modelling of Genetic Networks\",\"authors\":\"Jaskaran Gill, M. Chetty, Adrian B. R. Shatte, J. Hallinan\",\"doi\":\"10.1109/CIBCB49929.2021.9562958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse engineering of gene regulatory networks through temporal gene expression data is an active area of research. Among the plethora of modelling techniques under investigation is the decoupled S-system model, which attempts to capture the non-linearity of biological systems in detail. For the model, number of parameters to be estimated are significantly high even when the network is of small or medium scale. Thus, the inference process poses a significant computational burden. In this paper, we propose: (1) a novel population initialization technique, Dynamically Regulated Prediction Initialization (DRPI), which utilises prior knowledge of biological gene expression data to create a feedback loop to produce dynamically regulated high-quality individuals for initial population; (2) an adaptive fitness function; and (3) a method for the maintenance of population diversity. The aim of this work is to reduce the computational complexity of the inference algorithm, to speed up the entire process of reverse engineering. The performance of the proposed algorithm was evaluated against a benchmark dataset and compared with other methods from earlier work. The experimental results show that we succeeded in achieving higher accuracy results in lesser fitness evaluations, considerably reducing the computational burden of the inference process.\",\"PeriodicalId\":163387,\"journal\":{\"name\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB49929.2021.9562958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过时间基因表达数据进行基因调控网络的逆向工程是一个活跃的研究领域。在众多正在研究的建模技术中,解耦s系统模型试图详细捕捉生物系统的非线性。对于模型来说,即使是在中小型网络中,需要估计的参数数量也非常多。因此,推理过程带来了巨大的计算负担。在本文中,我们提出:(1)小说种群初始化技术,动态调节预测初始化(DRPI),利用先验知识的生物基因表达数据创建一个反馈回路来产生初始种群动态监管的高质量的个人;(2)自适应适应度函数;(3)维持种群多样性的方法。本工作的目的是降低推理算法的计算复杂度,加快逆向工程的整个过程。根据基准数据集评估了所提出算法的性能,并与早期工作中的其他方法进行了比较。实验结果表明,我们成功地在较少的适应度评估下获得了较高的准确率结果,大大减少了推理过程的计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamically Regulated Initialization for S-system Modelling of Genetic Networks
Reverse engineering of gene regulatory networks through temporal gene expression data is an active area of research. Among the plethora of modelling techniques under investigation is the decoupled S-system model, which attempts to capture the non-linearity of biological systems in detail. For the model, number of parameters to be estimated are significantly high even when the network is of small or medium scale. Thus, the inference process poses a significant computational burden. In this paper, we propose: (1) a novel population initialization technique, Dynamically Regulated Prediction Initialization (DRPI), which utilises prior knowledge of biological gene expression data to create a feedback loop to produce dynamically regulated high-quality individuals for initial population; (2) an adaptive fitness function; and (3) a method for the maintenance of population diversity. The aim of this work is to reduce the computational complexity of the inference algorithm, to speed up the entire process of reverse engineering. The performance of the proposed algorithm was evaluated against a benchmark dataset and compared with other methods from earlier work. The experimental results show that we succeeded in achieving higher accuracy results in lesser fitness evaluations, considerably reducing the computational burden of the inference process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信