基于集成纳米光子学的深度神经网络光加速器

Jun Shiomi, T. Ishihara, H. Onodera, A. Shinya, M. Notomi
{"title":"基于集成纳米光子学的深度神经网络光加速器","authors":"Jun Shiomi, T. Ishihara, H. Onodera, A. Shinya, M. Notomi","doi":"10.1109/ICRC2020.2020.00017","DOIUrl":null,"url":null,"abstract":"The emergence of nanophotonic devices has enabled to design light-speed on-chip optical circuits with extremely low latency. This paper proposes an optical implementation of scalable Deep Neural Networks (DNNs) enabling light-speed inference. The key issue in optical neural networks is the scalability limited by area, power and the number of available wavelengths. Due to the scalability, it is thus difficult to design an all-optical hardware accelerator for a large-scale DNN. To solve this problem, this paper firstly proposes an optical Vector Matrix Multiplier (VMM) structure operating with a low latency. The multipliers in a VMM are highly parallelized based on the Wavelength Division Multiplexing (WDM) technique, which reduces the area overhead without sacrificing the ultra-high speed nature. This paper then proposes the electrical digital interfaces for storing and handling intermediate VMM data without sacrificing the ultra-high speed nature, which enables to reuse the VMM multiple times with a low latency.","PeriodicalId":320580,"journal":{"name":"2020 International Conference on Rebooting Computing (ICRC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optical Accelerator for Deep Neural Network Based on Integrated Nanophotonics\",\"authors\":\"Jun Shiomi, T. Ishihara, H. Onodera, A. Shinya, M. Notomi\",\"doi\":\"10.1109/ICRC2020.2020.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of nanophotonic devices has enabled to design light-speed on-chip optical circuits with extremely low latency. This paper proposes an optical implementation of scalable Deep Neural Networks (DNNs) enabling light-speed inference. The key issue in optical neural networks is the scalability limited by area, power and the number of available wavelengths. Due to the scalability, it is thus difficult to design an all-optical hardware accelerator for a large-scale DNN. To solve this problem, this paper firstly proposes an optical Vector Matrix Multiplier (VMM) structure operating with a low latency. The multipliers in a VMM are highly parallelized based on the Wavelength Division Multiplexing (WDM) technique, which reduces the area overhead without sacrificing the ultra-high speed nature. This paper then proposes the electrical digital interfaces for storing and handling intermediate VMM data without sacrificing the ultra-high speed nature, which enables to reuse the VMM multiple times with a low latency.\",\"PeriodicalId\":320580,\"journal\":{\"name\":\"2020 International Conference on Rebooting Computing (ICRC)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC2020.2020.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC2020.2020.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米光子器件的出现使得设计具有极低延迟的光速片上光学电路成为可能。本文提出了一种可扩展深度神经网络(dnn)的光学实现,可以实现光速推理。光神经网络的关键问题是受面积、功率和可用波长数量限制的可扩展性。由于可扩展性的原因,为大规模深度神经网络设计一个全光硬件加速器是很困难的。为了解决这一问题,本文首先提出了一种低时延的光学矢量矩阵乘法器结构。VMM中的乘法器基于波分复用(WDM)技术高度并行化,在不牺牲超高速特性的情况下减少了面积开销。在不牺牲超高速特性的前提下,提出了用于存储和处理VMM中间数据的电子数字接口,使VMM能够以低延迟多次重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optical Accelerator for Deep Neural Network Based on Integrated Nanophotonics
The emergence of nanophotonic devices has enabled to design light-speed on-chip optical circuits with extremely low latency. This paper proposes an optical implementation of scalable Deep Neural Networks (DNNs) enabling light-speed inference. The key issue in optical neural networks is the scalability limited by area, power and the number of available wavelengths. Due to the scalability, it is thus difficult to design an all-optical hardware accelerator for a large-scale DNN. To solve this problem, this paper firstly proposes an optical Vector Matrix Multiplier (VMM) structure operating with a low latency. The multipliers in a VMM are highly parallelized based on the Wavelength Division Multiplexing (WDM) technique, which reduces the area overhead without sacrificing the ultra-high speed nature. This paper then proposes the electrical digital interfaces for storing and handling intermediate VMM data without sacrificing the ultra-high speed nature, which enables to reuse the VMM multiple times with a low latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信